Review

Abstract

HIF1α is a common component of pathways involved in the control of cellular metabolism and has a role in regulating immune cell effector functions. Additionally, HIF1α is critical for the maturation of dendritic cells and for the activation of T cells. HIF1α is induced in LPS-activated macrophages, where it is critically involved in glycolysis and the induction of proinflammatory genes, notably Il1b. The mechanism of LPS-stimulated HIF1α induction involves succinate, which inhibits prolyl hydroxylases (PHDs). Pyruvate kinase M2 (PKM2) is also induced and interacts with and promotes the function of HIF1α. In another critical inflammatory cell type, Th17 cells, HIF1α acts via the retinoic acid–related orphan receptor-γt (RORγt) to drive Th17 differentiation. HIF1α is therefore a key reprogrammer of metabolism in inflammatory cells that promotes inflammatory gene expression.

Authors

Sarah E. Corcoran, Luke A.J. O’Neill

×

Abstract

Radiotherapy is an effective treatment strategy for cancer, but a significant proportion of patients experience radiation-induced toxicity due to damage to normal tissue in the irradiation field. The use of chemical or biological approaches aimed at reducing or preventing normal tissue toxicity induced by radiotherapy is a long-held goal. Hypoxia-inducible factors (HIFs) regulate the production of factors that may protect several cellular compartments affected by radiation-induced toxicity. Pharmacological inhibitors of prolyl hydroxylase domain–containing enzymes (PHDs), which result in stabilization of HIFs, have recently been proposed as a new class of radioprotectors. In this review, radiation-induced toxicity in the gastrointestinal (GI) tract and the main cellular compartments studied in this context will be discussed. The effects of PHD inhibition on GI radioprotection will be described in detail.

Authors

Monica M. Olcina, Amato J. Giaccia

×

Abstract

The tumor immune response is in a dynamic balance between antitumor mechanisms, which serve to decrease cancer growth, and the protumor inflammatory response, which increases immune tolerance, cell survival, and proliferation. Hypoxia and expression of HIF-1α and HIF-2α are characteristic features of all solid tumors. HIF signaling serves as a major adaptive mechanism in tumor growth in a hypoxic microenvironment. HIFs represent a critical signaling node in the switch to protumorigenic inflammatory responses through recruitment of protumor immune cells and altered immune cell effector functions to suppress antitumor immune responses and promote tumor growth through direct growth-promoting cytokine production, angiogenesis, and ROS production. Modulating HIF function will be an important mechanism to dampen the tumor-promoting inflammatory response and inhibit cancer growth.

Authors

Daniel Triner, Yatrik M. Shah

×

Abstract

Mucosal surfaces are lined by epithelial cells and provide an important barrier to the flux of antigens from the outside. This barrier is provided at a number of levels, including epithelial junctional complexes, mucus production, and mucosa-derived antimicrobials. Tissue metabolism is central to the maintenance of homeostasis in the mucosa. In the intestine, for example, baseline pO2 levels are uniquely low due to counter-current blood flow and the presence of large numbers of bacteria. As such, hypoxia and HIF signaling predominates normal intestinal metabolism and barrier regulation during both homeostasis and active inflammation. Contributing factors that elicit important adaptive responses within the mucosa include the transcriptional regulation of tight junction proteins, metabolic regulation of barrier components, and changes in autophagic flux. Here, we review recent literature around the topic of hypoxia and barrier function in health and during disease.

Authors

Louise E. Glover, J. Scott Lee, Sean P. Colgan

×

Abstract

The role of tumor-associated macrophages (TAMs) in cancer is often correlated with poor prognosis, even though this statement should be interpreted with care, as the effects of macrophages primarily depend on their localization within the tumor. This versatile cell type orchestrates a broad spectrum of biological functions and exerts very complex and even opposing functions on cell death, immune stimulation or suppression, and angiogenesis, resulting in an overall pro- or antitumoral effect. We are only beginning to understand the environmental cues that contribute to transient retention of macrophages in a specific phenotype. It has become clear that hypoxia shapes and induces specific macrophage phenotypes that serve tumor malignancy, as hypoxia promotes immune evasion, angiogenesis, tumor cell survival, and metastatic dissemination. Additionally, TAMs in the hypoxic niches within the tumor are known to mediate resistance to several anticancer treatments and to promote cancer relapse. Thus, a careful characterization and understanding of this macrophage differentiation state is needed in order to efficiently tailor cancer therapy.

Authors

Anne-Theres Henze, Massimiliano Mazzone

×

Abstract

The traditional view of genome organization has been upended in the last decade with the discovery of vast amounts of non–protein-coding transcription. After initial concerns that this “dark matter” of the genome was transcriptional noise, it is apparent that a subset of these noncoding RNAs are functional. Long noncoding RNA (lncRNA) genes resemble protein-coding genes in several key aspects, and they have myriad molecular functions across many cellular pathways and processes, including oncogenic signaling. The number of lncRNA genes has recently been greatly expanded by our group to triple the number of protein-coding genes; therefore, lncRNAs are likely to play a role in many biological processes. Based on their large number and expression specificity in a variety of cancers, lncRNAs are likely to serve as the basis for many clinical applications in oncology.

Authors

Joseph R. Evans, Felix Y. Feng, Arul M. Chinnaiyan

×

Abstract

The number of long noncoding RNAs (lncRNAs) has grown rapidly; however, our understanding of their function remains limited. Although cultured cells have facilitated investigations of lncRNA function at the molecular level, the use of animal models provides a rich context in which to investigate the phenotypic impact of these molecules. Promising initial studies using animal models demonstrated that lncRNAs influence a diverse number of phenotypes, ranging from subtle dysmorphia to viability. Here, we highlight the diversity of animal models and their unique advantages, discuss the use of animal models to profile lncRNA expression, evaluate experimental strategies to manipulate lncRNA function in vivo, and review the phenotypes attributable to lncRNAs. Despite a limited number of studies leveraging animal models, lncRNAs are already recognized as a notable class of molecules with important implications for health and disease.

Authors

Michael Feyder, Loyal A. Goff

×

Abstract

Uncontrolled inflammation underpins a diverse range of diseases where effective therapy remains an unmet clinical need. Hypoxia is a prominent feature of the inflammatory microenvironment that regulates key transcription factors including HIF and NF-κB in both innate and adaptive immune cells. In turn, altered activity of the pathways controlled by these factors can affect the course of inflammation through the regulation of immune cell development and function. In this review, we will discuss these pathways and the oxygen sensors that confer hypoxic sensitivity in immune cells. Furthermore, we will describe how hypoxia-dependent pathways contribute to immunity and discuss their potential as therapeutic targets in inflammatory and infectious disease.

Authors

Cormac T. Taylor, Glen Doherty, Padraic G. Fallon, Eoin P. Cummins

×

Abstract

A major subset of human cancers shows evidence for spontaneous adaptive immunity, which is reflected by the presence of infiltrating CD8+ T cells specific for tumor antigens within the tumor microenvironment. This observation has raised the question of which innate immune sensing pathway might detect the presence of cancer and lead to a natural adaptive antitumor immune response in the absence of exogenous infectious pathogens. Evidence for a critical functional role for type I IFNs led to interrogation of candidate innate immune sensing pathways that might be triggered by tumor presence and induce type I IFN production. Such analyses have revealed a major role for the stimulator of IFN genes pathway (STING pathway), which senses cytosolic tumor–derived DNA within the cytosol of tumor-infiltrating DCs. Activation of this pathway is correlated with IFN-β production and induction of antitumor T cells. Based on the biology of this natural immune response, pharmacologic agonists of the STING pathway are being developed to augment and optimize STING activation as a cancer therapy. Intratumoral administration of STING agonists results in remarkable therapeutic activity in mouse models, and STING agonists are being carried forward into phase I clinical testing.

Authors

Leticia Corrales, Sarah M. McWhirter, Thomas W. Dubensky Jr., Thomas F. Gajewski

×

Abstract

The term asthma encompasses a disease spectrum with mild to very severe disease phenotypes whose traditional common characteristic is reversible airflow limitation. Unlike milder disease, severe asthma is poorly controlled by the current standard of care. Ongoing studies using advanced molecular and immunological tools along with improved clinical classification show that severe asthma does not identify a specific patient phenotype, but rather includes patients with constant medical needs, whose pathobiologic and clinical characteristics vary widely. Accordingly, in recent clinical trials, therapies guided by specific patient characteristics have had better outcomes than previous therapies directed to any subject with a diagnosis of severe asthma. However, there are still significant gaps in our understanding of the full scope of this disease that hinder the development of effective treatments for all severe asthmatics. In this Review, we discuss our current state of knowledge regarding severe asthma, highlighting different molecular and immunological pathways that can be targeted for future therapeutic development.

Authors

Anuradha Ray, Mahesh Raundhal, Timothy B. Oriss, Prabir Ray, Sally E. Wenzel

×

No posts were found with this tag.