Mechanism of antihypertensive effect of dietary potassium in experimental volume expanded hypertension in rats

MB Pamnani, X Chen, FJ Haddy… - Clinical and …, 2000 - Taylor & Francis
MB Pamnani, X Chen, FJ Haddy, JF Schooley, Z Mo
Clinical and Experimental Hypertension, 2000Taylor & Francis
Dietary potassium supplementation lowers blood pressure (BP) and attenuates
complications in hypertensive subjects, particularly those with the low renin volume
expanded (LRVE) variety. We and others have shown that the plasma level of a digitalis like
substance (DLS) is elevated in this type of hypertension. We therefore, examined the effect
of increases in dietary potassium on the plasma level of endogenous DLS, myocardial and
renal Na+, K+-ATPase (NKA) activities, BP, and renal excretory function in reduced renal …
Dietary potassium supplementation lowers blood pressure (BP) and attenuates complications in hypertensive subjects, particularly those with the low renin volume expanded (LRVE) variety. We and others have shown that the plasma level of a digitalis like substance (DLS) is elevated in this type of hypertension. We therefore, examined the effect of increases in dietary potassium on the plasma level of endogenous DLS, myocardial and renal Na+, K+-ATPase (NKA) activities, BP, and renal excretory function in reduced renal mass (RRM)-salt hypertension in the rat, a classical model of LRVE hypertension. 70% RRM rats were divided in 4 groups, namely those consuming: 1) a sodium free and normal potassium (1.3% as KCl) diet (RRM-0 Na), 2) a normal sodium and normal potassium diet (RRM-NaK), 3) a normal sodium and high potassium (2 X normal) diet (RRM-Na2K), and 4) a normal sodium and 4 times normal potassium diet (RRM-Na4K). At the end of 4 weeks of dietary treatment, direct BP was recorded, plasma level of DLS determined by bioassay and with a radioimmunoassay for digoxin (DIF) and myocardial and renal NKA activities were measured. As expected, compared to RRM-0Na rats, RRM-NaK rats developed hypertension. BP increased significantly less in RRM-Na2K, whereas BP did not increase in RRM-Na4K rats. Hypertension in RRM-NaK rats was associated with an increase in plasma DLS and DIF and decrease in renal and myocardial NKA activities. DLS was increased (DIF was not changed) and myocardial NKA also decreased in rats consuming double potassium. However, quadrupling potassium in the diet (RRM-Na4K) normalized DLS and DIF and increased myocardial and renal NKA activities, compared to RRM-0Na rats. Also compared to RRM-0Na, water consumption, urinary volume excretion, sodium, and potassium increased in the other 3 groups, more so in RRM-Na4K rats. These data show that quadrupling the potassium in the diet prevents the BP increase in RRM rats and this is associated with diuresis/natriuresis and normalization of DLS, perhaps because the diuresis/natriuresis normalizes blood volume.
Taylor & Francis Online