Individual nonobese diabetic mice exhibit unique patterns of CD8+ T cell reactivity to three islet antigens, including the newly identified widely expressed dystrophia …

SM Lieberman, T Takaki, B Han… - The Journal of …, 2004 - journals.aai.org
SM Lieberman, T Takaki, B Han, P Santamaria, DV Serreze, TP DiLorenzo
The Journal of Immunology, 2004journals.aai.org
Spontaneous autoimmune diabetes development in NOD mice requires both CD8+ and
CD4+ T cells. Three pathogenic CD8+ T cell populations (represented by the G9C8, 8.3, and
AI4 clones) have been described. Although the Ags for G9C8 and 8.3 are known to be
insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein,
respectively, only mimotope peptides had previously been identified for AI4. In this study, we
used peptide/MHC tetramers to detect and quantify these three pathogenic populations …
Abstract
Spontaneous autoimmune diabetes development in NOD mice requires both CD8+ and CD4+ T cells. Three pathogenic CD8+ T cell populations (represented by the G9C8, 8.3, and AI4 clones) have been described. Although the Ags for G9C8 and 8.3 are known to be insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein, respectively, only mimotope peptides had previously been identified for AI4. In this study, we used peptide/MHC tetramers to detect and quantify these three pathogenic populations among β cell-reactive T cells cultured from islets of individual NOD mice. Even within age-matched groups, each individual mouse exhibited a unique distribution of β cell-reactive CD8+ T cells, both in terms of the number of tetramer-staining populations and the relative proportion of each population in the islet infiltrate. Thus, the inflammatory process in each individual follows its own distinctive course. Screening of a combinatorial peptide library in positional scanning format led to the identification of a peptide derived from dystrophia myotonica kinase (DMK) that is recognized by AI4-like T cells. Importantly, the antigenic peptide is naturally processed and presented by DMK-transfected cells. DMK is a widely expressed protein that is nonetheless the target of a β cell-specific autoimmune response.
journals.aai.org