GRK6 deficiency is associated with enhanced CXCR4-mediated neutrophil chemotaxis in vitro and impaired responsiveness to G-CSF in vivo

A Vroon, CJ Heijnen, R Raatgever… - Journal of Leucocyte …, 2004 - academic.oup.com
A Vroon, CJ Heijnen, R Raatgever, IP Touw, RE Ploemacher, RT Premont, A Kavelaars
Journal of Leucocyte Biology, 2004academic.oup.com
The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signaling
pathway is thought to play an important role in the induction of neutrophil mobilization from
the bone marrow in response to granulocyte-colony stimulating factor (G-CSF) treatment.
CXCR4 belongs to the family of G protein-coupled receptors. Multiple members of this
receptor family are desensitized by agonist-induced G protein-coupled receptor kinase
(GRK)-mediated phosphorylation. Here, we demonstrate that in vitro SDF-1-induced …
Abstract
The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signaling pathway is thought to play an important role in the induction of neutrophil mobilization from the bone marrow in response to granulocyte-colony stimulating factor (G-CSF) treatment. CXCR4 belongs to the family of G protein-coupled receptors. Multiple members of this receptor family are desensitized by agonist-induced G protein-coupled receptor kinase (GRK)-mediated phosphorylation. Here, we demonstrate that in vitro SDF-1-induced chemotaxis of bone marrow-derived neutrophils from GRK6-deficient mice is significantly enhanced and that desensitization of the calcium response to SDF-1 is impaired in GRK6−/− neutrophils. CXCR4 activation by SDF-1 provides a key retention signal for hematopoietic cells in the bone marrow. It is interesting that we observed that in the absence of GRK6, the G-CSF-induced increase in circulating neutrophils is profoundly impaired. Three days after injection of pegylated-G-CSF, significantly lower numbers of circulating neutrophils were observed in GRK6−/− as compared with wild-type (WT) mice. In addition, early/acute neutrophil mobilization in response to G-CSF (3 h after treatment) was also impaired in GRK6−/− mice. However, blood neutrophil levels in untreated GRK6−/− and WT mice were not different. Moreover, the percentage of neutrophils in the bone marrow after G-CSF treatment was increased to the same extent in WT and GRK6−/− mice, indicating that neutrophil production is normal in the absence of GRK6. However, the increased chemotactic sensitivity of GRK6−/− neutrophils to SDF-1 was retained after G-CSF treatment. In view of these data, we suggest that the impaired G-CSF-induced neutrophil mobilization in the absence of GRK6 may be a result of enhanced CXCR4-mediated retention of PMN in the bone marrow.
Oxford University Press