SUPPLEMENTAL FIGURE LEGENDS

Figure S1 Genetic or pharmacologic COX-2 inhibition led to increased kidney macrophage infiltration. Wild type or COX-2^{-/-} mice (2 months old, C57/Bl6 background) were treated with a high salt diet (HS) for 4 weeks. (A) Kidney macrophage infiltration was markedly higher in HS plus SC58236-treated mice than in HS-treated mice, as indicated by immunostaining of F4/80, a marker of macrophages/dendritic cells (*** *P*<0.001, n = 4 in each group). (B) HS-treated COX-2^{-/-} mice had more kidney macrophages compared to HS-treated wild type mice. Original magnification: x 160 in both A and B. All values are means \pm SEM. All *P* values were calculated by Student's *t* test.

Figure S2 COX-2 inhibition led to increased M1 but decreased M2 markers *in vivo* and *in vitro*. (A) Kidney mRNA levels of M1/Th1 markers/cytokines including iNOS, CCL3, TNF- α , IL-1 α and IL-1 β were markedly higher but that of mannose receptor (MR) were markedly lower in HS plus SC58236-treated mice than in mice with HS alone (***P*<0.01 and ****P*<0.001, n = 4 in each group). (B) Freshly isolated peritoneal macrophages treated with 25 μ M SC58236 for 24 h had decreased protein levels of MR and arginase 1 (M2 markers) but increased protein levels of TNF- α (M1 marker). All values are means \pm SEM. All *P* values were calculated by Student's *t* test.

Figure S3 Mice with a deficient hematopoietic cell COX-2 pathway had increased heart hypertrophy in response to chronic high salt intake. (A) Heart weight vs. body weight ratios were higher in HS-treated COX-2^{-/-}-WT BMT mice than in HS-treated WT-WT BMT mice (**P<0.01, n = 4). (B) Heart weight vs. body weight ratios were also higher in HS-

treated CD11b-Cre; $EP_4^{f/f}$ mice than in HS-treated $EP_4^{f/f}$ mice (****P*<0.001, n = 4). All values are means ± SEM. All *P* values were calculated by Student's *t* test.

Figure S4 Prostaglandin EP₄ receptor tonically suppressed Th1 cytokine expression in cultured macrophages. (A) Murine macrophage RAW264.7 cells expressed COX-2, mPGES1 and VEGF-C. EP₄ was the major EP receptors in RAW264.7 cells. COX-1 and EP₁ receptor were undetectable. (B) Treatment of RAW264.7 cells with a selective EP₄ receptor antagonist, L-161,982 (20 μ M), led to increased mRNA levels of M1/Th1 markers/cytokines, including iNOS, IL-23 α , CCL3, TNF- α , IL-1 α and IL-6 (****P*<0.001, n = 3). (C) PGE₂ led to inhibition of iNOS expression, which was prevented by the selective EP₄ receptor antagonist, L-161,982 (****P*<0.001 vs. PGE₂ alone, n = 4 in each group). All values are means ± SEM. All *P* values were calculated by Student's *t* test.

Figure S5 Macrophage EP₄ receptor was effectively deleted in CD11b-Cre; EP₄^{f/f} mice. Peritoneal macrophages were isolated and EP₄ mRNA was quantitated by qPCR. Macrophage EP₄ mRNA levels were significantly lower in CD11b-Cre; EP₄^{f/f} mice than in EP₄^{f/f} mice (***P*<0.01, n = 4). All values are means \pm SEM. All *P* values were calculated by Student's *t* test.

Figure S6 The expression levels of p-NCC were increased in HS-treated mPGES-1^{-/-}-WT BMT mouse than in HS-treated WT-WT BMT control.

Figure S7 Increased medium NaCl elevated mRNA levels of COX-2 and NFAT5 and VEGF-C in cultured macrophage cells. (A) Addition of 40 mM NaCl to the medium increased RAW264.7 cell COX-2 and NFAT5 mRNA levels at 2.5 h and also increased VEGF-C mRNA levels at 5 h (*P<0.05 and **P<0.01 vs. control, n = 4 in each group). (B)

PGE₂ (100 nM) stimulated RAW264.7 cell NFAT5 mRNA expression (**P<0.01, n = 4). All values are means ± SEM. All *P* values were calculated by Student's *t* test.

Figure S8 COX-2^{-/-}-COX-2^{-/-} BMT mice had increased skin Na and K content and increased water content in response to high salt intake. (A) HS-treated COX-2^{-/-}-COX-2^{-/-} BMT mice had higher skin sodium and potassium content, compared to HS-treated WT-WT BMT mice (*P<0.05, n = 4). (B) HS-treated COX-2^{-/-} COX-2^{-/-} BMT mice had higher skin water content, compared to HS-treated WT-WT BMT mice (*P<0.05, n = 4). All values are means ± SEM. All *P* values were calculated by Student's *t* test.

Figure S9 Renal ENaC mRNA levels were higher in HS-treated COX-2^{-/-}-WT BMT and mPGES-1^{-/-}-WT BMT mice than in HS-treated WT-WT BMT mice. Both ENaC β and ENaC γ mRNA levels were significantly higher in COX-2^{-/-}-WT BMT and mPGES-1^{-/-}-WT BMT mice than in WT-WT BMT mice in response to a high salt diet. (**P*<0.05, n = 5 in each group). All values are means ± SEM. All *P* values were calculated by Student's *t* test.

Figure S10. Deficiency in hematopoietic cell COX-2 pathway had no effects on water and salt balance. Trained mice were given 1 mEq of NaCl via gastric gavage, and urine was collected every 12 h for next 72 h. (A and B) Both urine volume and sodium excretion were comparable between WT-WT and COX-2^{-/-}-WT BMT mice (n = 4) (A) or between $EP_4^{f/f}$ mice and CD11b-Cre; $EP_4^{f/f}$ mice (n = 6) (B).

Figure S11 Blood pressure was comparable between control COX-2^{-/-}-WT BMT and WT-WT BMT Mice measured by tail-cuff microphonic manometer or carotid catheterization (n = 6 in each group).

Parameters	Na (mM)	K (mM)	CI (mM)	TCO ₂ (mM)	BUN (mg/d	I) HCT (%) Hgb (g/dl)
Control	148 ± 1	5.5 ± 0.7	115 ±2	21 ± 1	21 ± 4	52 ± 2	17 ± 1
WT-WT	148 ± 1	5.6 ± 0.6	117 ±2	22 ± 2	20 ± 1	50 ± 1	17 ± 1
COX-2 ^{-/-} -WT	148 ± 2	5.6 ± 1.2	116 ±2	25 ± 3	17 ± 3	48 ± 3	16 ± 1

Supplemental Table 1. Renal and Hematologic Parameters After BMT

Six weeks after BMT, renal and hematologic parameters were measured. Data were presented as mean \pm s.e.m (n = 3 in each group).

В

Α

Supplemental Figure 5

p-NCC immunostaining: original magnification: x 250.

Supplemental Figure 7

WT-WT COX-2^{-/-}-COX-2^{-/-}

Supplemental Figure 9

Α

Supplemental Figure 11