

Head malformations in *Tasp1*^{-/-} mice in mixed genetic background (129SvJ:C57Bl/6). (A) Skulls of *WT* and *Tasp1*^{-/-} newborns (129SvJ:C57Bl/6) (N2), stained with alizarin red, show a marked difference in size and dimensions. The average ratios of skull height to its length are shown. **p < 0.01, unpaired two-tailed Student's t-test. (B) Regions of the jaw and tongue of E14.5 *WT* and *Tasp1*^{-/-} embryos are shown by H&E in sagittal sections. Note the difference in size of the tongues denoted by yellow asterisks.

Craniofacial malformations in $Tasp1^{-/-}$ mice during embryogenesis. (A) Frequencies of the various head malformations observed in $Tasp1^{-/-}$ embryos at E8.5-E12.5. (B) Expression of key genes associated with head formation. Quantitative RT-PCR analyses of the indicated genes were performed using RNA isolated from *WT* and $Tasp1^{-/-}$ E9.5 embryo head. n=3-6 (*TFIIA*^{nc/nc}) and n=3 (*WT*). Error bars represent SD. *p < 0.05, unpaired two-tailed Student's t-test. (C) Quantitative RT-PCR analyses of *MMPs* and *Sox* genes for *WT* and $Tasp1^{-/-}$ E10.5 embryo head RNA. n=3-5 (*TFIIA*^{nc/nc}) and n=3-4 (*WT*). Error bars represent SD. *p < 0.05, unpaired two-tailed Student's t-test.

(A) Whole mount in situ hybridization with $TFIIA\alpha$ - β antisense probes on E10.5 WT embryo. (B) The frequencies of head malformations in E14.5 $MLL1^{nc/nc}$; $MLL2^{nc/nc}$; $TFIIA^{nc/nc}$ embryos. (C) Immunoblots detecting TFIIA α - β , TFIIA α , TFIIA γ , and β -actin in lysates from WT , $TFIIA^{+/nc}$, and $TFIIA^{nc/nc-}$ E10.5 embryo heads. In contrast to TFIIA α - β , TFIIA γ is not markedly stabilized in the $TFIIA^{+/nc}$ lysate.

Summarized diagram of the biological functions of Taspase1 in embryogenesis. Taspase1mediated proteolysis of MLL1 promotes maturation of MLL1's histone methyltransferase acivity, which in turn, leads to upregulation of *Cyclin* and *Hox* genes via histone H3 lysine-4 trimethylation. In testes, Taspase1-mediated proteolysis of TFIIA promotes targeting of TRF2 to the promoters of spermiogenic genes, *Tnp* and *Prm*, to drive spermatogenesis. During head morphogenesis, this Taspase1-mediated proteolysis of TFIIA induces TFIIA susceptibility to proteosome-mediated degradation, thereby limiting transcriptional activation of *Cdkn2a*.

Gene set	Size	NES	NOM p-val
RACCYCDPATHWAY	21	1.61	0.000
CELL_CYCLE_KEGG	76	1.57	0.000
HSA04115_P53_SIGNALING_PATHWAY	57	1.57	0.000
CELLCYCLEPATHWAY	20	1.55	0.000
CALCINEURINPATHWAY	18	1.54	0.000
HSA05219_BLADDER_CANCER	36	1.48	0.000
HSA05218_MELANOMA	66	1.46	0.000
HSA05214_GLIOMA	58	1.45	0.000
RHOPATHWAY	27	1.45	0.101
CARM_ERPATHWAY	24	1.43	0.080
HSA04150_MTOR_SIGNALING_PATHWAY	42	1.42	0.095
G1PATHWAY	23	1.42	0.080
G2PATHWAY	19	1.40	0.000
CCR3PATHWAY	20	1.31	0.204
ATMPATHWAY	17	1.29	0.181
DEATHPATHWAY	26	1.27	0.191
HSA03022_BASAL_TRANSCRIPTION_FACTORS	28	1.25	0.083
HSA05220_CHRONIC_MYELOID_LEUKEMIA	71	1.22	0.201
HSA05223_NON_SMALL_CELL_LUNG_CANCER	48	1.22	0.107
HSA00592_ALPHA_LINOLENIC_ACID_METABOLISM	15	1.19	0.224

Table S1

GSEA list of the top 20 overrepresented gene sets in expression signals of $Tasp1^{-/-}$ embryo heads. Gene set sizes, normalized enrichment scores (NES), and nominal p-values (NOM p-value) are included. Gene sets related to cell proliferation are shown in bold.

Mouse <i>p16Ink4a</i> F	ATTGGGCGGGCACTGAATCTC	
Mouse <i>p16Ink4a</i> R	TCTGTCTGCAGCGGACTCC	
Mouse <i>p19Arf</i> F	GTTCTTGGTCACTGTGAGGATTCAGC	
Mouse <i>p19Arf</i> R	CCTCTTCTCAAGATCCTCTCTAGCCTC	
Mouse <i>p21Cip1</i> F	CCTGGTGATGTCCGACCTGTTC	
Mouse <i>p21Cip1</i> R	CCTCTTCTCAAGATCCTCTCTAGCCTC	
Mouse <i>p27Kip1</i> F	GGTCTCAGGCAAACTCTGAGGACC	
Mouse <i>p27Kip1</i> R	AGCTGTTTACGTCTGGCGTCGAAG	
Mouse CyclinD1 F	CGTATCTTACTTCAAGTGCGTGCAGAAG	
Mouse CyclinD1 R	CAGGTTCCACTTGAGCTTGTTCAC	
Mouse CyclinE1 F	GGATGAGAGCAGTTCTTCTGGATTGG	
Mouse CyclinE1 R	GACACAATGGTCAGAGGGCTTAGAC	
Mouse CyclinA2 F	CACTGACACCTCTTGACTATCCAATGG	
Mouse CyclinA2 R	GCTGAAGCTTCCCTCTTAACACAGAC	
Mouse Otx2 F	TATCTAAAGCAACCGCCTTACG	
Mouse Otx2 R	AAGTCCATACCCGAAGTGGTC	
Mouse Ssdp1 F	CCACCTCACAATCCCAGCAG	
Mouse Ssdp1 R	CCTCGGGGAGGGTTCATTC	
Mouse Hex F	CGGACGGTGAACGACTACAC	
Mouse <i>Hex</i> R	CGTTGGAGAACCTCACTTGAC	
Mouse <i>Hesx1</i> F	TGAGAGCATTTTAGGACTGGACC	
Mouse Hesx1 R	GGGTGGGTTGCCATCTTTCT	
Mouse <i>Dkk1</i> F	CTCATCAATTCCAACGCGATCA	
Mouse <i>Dkk1</i> R	GCCCTCATAGAGAACTCCCG	
Mouse <i>Mmp1a</i> F	GATGCTATAACTACATTTAGGGGAGAGGTGT	
Mouse <i>Mmp1a</i> R	CTTCATAAGCAGCGTCAAGTTTAACTGGAAG	
Mouse <i>Mmp3</i> F	GGAGAACATGGAGACTTTGTCCCTTTTG	
Mouse <i>Mmp3</i> R	TTGGCTGAGTGGTAGAGTCCC	
Mouse MT1-MMP F	CAGTATGGCTACCTACCTCCAGG	
Mouse MT1-MMP R	GCCTTGCCTGTCACTTGTAAACC	
Mouse Sox1 F	ATACCGCAATCCCCTCTCAGACG	
Mouse Sox1 R	GCTATGTACAACATCCGACTCCTCTTCC	
Mouse Sox2 F	GCGGAGTGGAAACTTTTGTCCG	
Mouse Sox2 R	CGGGAAGCGTGTACTTATCCTTCTTC	
Mouse Cdkn2a upstream (ChIP) F	CTATGGCCCAGTTTGAGCTC	
Mouse Cdkn2a upstream (ChIP) R	GCTGAGATGATTCGGTGGAT	
Mouse <i>p19Arf</i> TSS (ChIP) F	AAGCTTTCCCGCGCGACT	
Mouse <i>p19Arf</i> TSS (ChIP) R	CATCTTTGCTCCACGCCCATCT	
Mouse p16Ink4a TSS (ChIP) F	TTCAGGGCAAATAGCGCCACCTAT	
Mouse p16Ink4a TSS (ChIP) R	TGGGTCCCTCCTTCCTTCCTCTGA	
Mouse p21Cip1 TSS (ChIP) F	CCACTGGACCTAGCAATTCACACGTATTT	
Mouse p21Cip1 TSS (ChIP) R	AGAAGTAGGAGTCACCGTCCTGTTTACC	

Table S2

The oligonucleotide sequences utilized in quantitative RT-PCR analysis. F, forward; R, reverse.