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Introduction
LAM is a slowly progressive neoplasm that targets the lung, caus-
ing cystic destruction and respiratory failure over one to two 
decades (1–4). LAM occurs in about 3.4–7.8 per million women (5) 
(although it is likely to be substantially underdiagnosed) and in at 
least 30% of women with tuberous sclerosis complex (TSC) (6–8). 
Clinically significant LAM occurs almost exclusively in women, 
although radiographic evidence of cystic lung disease consistent 
with LAM and a few biopsy-documented cases of LAM have been 
reported in men with (9–11) and without (12) TSC. The average 
age at diagnosis is about 35 years, typically delayed by 3–5 years 
due to confusion with more common causes of dyspnea, including 
asthma or chronic obstructive lung disease (13, 14).

LAM manifestations differ in patients with and without TSC and 
include recurrent pneumothorax, chylous pleural effusions, and 
abdominal tumors, including renal angiomyolipomas and lymph-
angiomyomas; it can also be discovered incidentally on abdominal 
or chest CTs performed for unrelated purposes (Table 1). Lym-
phatic obstruction can lead to collection of chylous fluid in the 
pleural, pericardial, or peritoneal spaces or to fistulous lymphatic 
connections with hollow viscera including the gastrointestinal 
or genitourinary tracts. Lung function declines at rates that vary 
between 3% and 15% per year (15–18), accelerated in some patients 
by hormonal fluxes associated with menstruation, pregnancy, or 
birth control pill use (19). By 10 years from diagnosis, about 55% of 
LAM patients experience shortness of breath with daily activities, 
20% require supplemental oxygen, and 10% have died (20).

High-resolution CT scanning reveals diffuse, thin-walled cystic 
changes that may vary from a few scattered cysts to almost com-
plete replacement of the pulmonary parenchyma with coalescent 
cysts (Figure 1, A–D, and ref. 21). Typical findings on lung biopsy 
include smooth muscle cell infiltration of lymphatics, airways, 
vessels, and alveolar septa (22). The invading “LAM cells” are iden-
tified by their spindle-shaped or epithelioid morphology, abun-

dant eosinophilic cytoplasm, and low proliferative index. They 
stain with antibodies to smooth muscle actin and desmin; with 
HMB-45, an antibody that recognizes an epitope within the pro-
tein gp-100 in the melanogenesis pathway (23); and in many cases, 
with antibodies to estrogen or progesterone receptors (refs. 24–26 
and Figure 1E). The smooth muscle cells within the kidney lesions 
of patients with angiomyolipomas have a nearly identical morpho-
logic appearance and immunohistochemical profile, and primary 
and immortalized angiomyolipoma cells are often used as surro-
gates for LAM cells in laboratory studies. LAM cells also express the 
lymphangiogenic proteins VEGF-C and VEGF-D and abut slit-like 
spaces coursing through and surrounding LAM nodules (27, 28). 
These clefts are lined with endothelial cells that stain with anti-
bodies against the receptor for VEGF-C and VEGF-D, VEGFR-3,  
as well as for LYVE-1 and podoplanin, marking them as lymphatic 
channels. Serum levels of VEGF-D are elevated in patients with 
LAM, and have utility as diagnostic and perhaps prognostic and 
predictive biomarkers (29–31).

The genetic basis of LAM
Understanding the clinical and genetic relationship between TSC 
and LAM has been pivotal to progress in LAM pathogenesis and 
therapy. TSC is an autosomal dominant tumor suppressor syn-
drome with high penetrance associated with seizures, cognitive 
impairment, skin lesions, and benign “hamartomatous” tumors 
of the brain, heart, and kidney (32). The earliest reported case 
of LAM was described in a patient with TSC (TSC-LAM) who 
presented with bilateral spontaneous pneumothoraces and died 
of acute respiratory failure (33). Through most of the last cen-
tury, the prevalence of LAM in TSC patients was thought to be 
low, affecting only about 2.5% of females with TSC. However, 
screening of TSC populations has demonstrated that at least 
one-third of women with TSC have cystic changes compatible 
with LAM, consistent with a prevalence of about 200,000 cases 
worldwide (based on an estimated TSC prevalence of 1 in 6,000) 
(6–8). In 1937, the first case of LAM in a patient who did not have 
TSC was reported (34). Over time, it has become clear that most 
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patients with LAM who seek medical evaluation have this less 
prevalent “sporadic” form of LAM (S-LAM), which is estimated 
to affect about 10,000 patients worldwide (5). The reason for the 
paradoxical relationship between prevalence and frequency of 
clinical presentation in patients with TSC-LAM and S-LAM is 
not clear, but it is possible that TSC-LAM and S-LAM have dif-
ferent natural histories, or that other health priorities such as 
cognitive impairment, seizures, or renal failure affect attention 
to lung disease in TSC-LAM patients.

Our understanding of the genetic basis of LAM was greatly 
accelerated by the cloning of the tuberous sclerosis genes TSC1 
(35) and TSC2 (36), in the 1990s. TSC-causing mutations are 
widely distributed across these large genes, composed of 23 and 
41 exons, respectively. TSC-LAM occurs in women with germline 
mutations in either TSC1 or TSC2 (37); however, the majority 
have germline mutations in TSC2. TSC2 mutations are also more 
prevalent in the TSC population and tend to cause more severe 
manifestations (38). LAM cells from some women with TSC-LAM 
exhibit chromosome 16p13 loss of heterozygosity, indicative 
of inactivation of the wild-type TSC2 allele (39). Therefore, the 
pathogenesis of TSC-LAM is consistent with the Knudson ‘two-
hit’ tumor suppressor gene mechanism (40), as are most other 
lesions in TSC, including angiomyolipomas, rhabdomyomas, and 
subependymal giant cell astrocytomas (41). Importantly, a recent 
genetic analysis of angiomyolipomas for regions of genomic loss 
and of activating and inactivating mutations revealed only TSC2 
mutations and not mutations in TSC1, RHEB, or other candidate 
loci, consistent with a necessary and sufficient role for TSC muta-
tions in the pathogenesis of the tumor (42).

By definition, women with S-LAM do not have TSC2 germline 
mutations (43), yet angiomyolipomas and para-aortic lymph 
nodes from patients with S-LAM have loss of heterozygosity in the 
TSC2 region of chromosome 16p13 (44), and inactivating somatic 
TSC2 mutations have been identified in microdissected LAM cells 
from the lung (45, 46). Consistent with these observations, FISH 
analyses of circulating LAM cells isolated from the peripheral 
blood of women with S-LAM have revealed that the majority have 
loss of heterozygosity in the TSC2 region of chromosome 16p13 
(47). These findings strongly suggest a model whereby inactivation 
of both alleles of TSC2 is the cause of LAM in the majority of both 
the TSC-associated and sporadic cases.

TSC gene mutations in LAM cells lead to activation  
of the TORC1 signaling network
The TSC2 gene encodes tuberin (48), a highly evolutionarily 
conserved GTPase-activating protein (GAP), and TSC1 encodes 
hamartin, which heterodimerizes with tuberin (49) and appears 
to be essential for its function (Figure 2A). Rheb, a Ras homolog, 
is maintained in an inactive state by tuberin (50, 51). The TSC1/
TSC2/Rheb triad constitutes a critical cellular signaling node, 
serving as a gatekeeper by sensing upstream inputs including 
growth factor activation, oxygen tension (52), amino acid avail-
ability, and ATP levels to regulate the downstream functions of 
TORC1 (reviewed in refs. 53–55). The direct targets of TORC1 
continue to be defined and include P70 S6 kinase and 4EBP1, 
which regulates protein translation; ULK1, which is a master 
regulator of autophagy (56–58); and growth factor receptor–
bound protein 10 (GRB10), an adaptor protein that contributes 
to feedback regulation of PI3K signaling (59, 60). Several other 
feedback loops that regulate mTOR pathway signaling have 
also been described, many of which have potentially important 
implications for the response to TORC1-targeted therapies (61). 
Studies from many groups have demonstrated that activation of 
TORC1 in LAM cells and/or other TSC2-deficient cells leads to 
phosphorylation of ribosomal protein S6, growth factor–inde-
pendent growth, increased cell size (62), enhanced cell survival, 
and suppressed autophagy (56, 63). Evidence of dysregulation of 
this “canonical” TSC/Rheb/TORC1 signaling network has also 
been consistently observed in tumor cells from animal models 
of TSC (64–66), in angiomyolipomas from women with S-LAM 
(67, 68), and in LAM cells isolated from explanted lungs of LAM 
patients (69). Sirolimus, a highly specific inhibitor of TORC1, 
suppresses growth of spontaneously occurring renal tumors in 
the Tsc2+/– Eker rat model (65) and in Tsc1+/– and Tsc2+/– mice 
(70), as well as TSC2-deficient xenograft tumors in immune-
deficient mice (56, 70, 71). Based on these preclinical data, trials 
of sirolimus therapy in humans with tuberous sclerosis or LAM 
began in 2003.

In addition to the canonical TSC/Rheb/TORC1 pathway, data 
from a variety of experimental systems have pointed toward 
the existence of noncanonical functions of TSC1/2 and Rheb 
(reviewed in ref. 63 and Figure 2B). The molecular mechanisms 
and clinical significance of these are generally less well understood 
than the canonical mechanisms, but include aggresome forma-
tion (72), regulation of the primary cilium (73, 74), regulation of 
the cytoskeleton and RhoA via hamartin (75) or TOR complex 2 
(TORC2) (71), and regulation of cellular differentiation and pro-
liferation via B-Raf (76, 77) and Notch (63, 78).

Pathways affecting proliferation and survival  
of LAM cells: apoptotic susceptibility  
and links to proliferation stimuli
Resistance to cell death is a critical capability for neoplastic cells. 
Paradoxically, compelling data indicate that TSC2-deficient cells 
are more susceptible than their wild-type counterparts to apop-
tosis triggered by ER stress (72, 79) and glucose deprivation (80, 
81). Elevated p53 transcription and translation rates may also 
contribute to stress-induced apoptosis (82). In contrast, under 
some circumstances, such as serum deprivation, TSC-deficient 
cells appear to be resistant to apoptosis. This may be mediated 
through FKBP38 (83). Regulation of the apoptotic potential of 
LAM cells is context-dependent and intimately related to met-

Table 1
LAM is a multisystem disorder that affects the lungs, pleural 
space, kidney, liver, lymphatics, and uterus

  TSC-LAM S-LAM
Lung cysts Often mild Often profuse
Elevated serum VEGF-D 100% 70%
Chylous pleural effusion 10% 30%
Pneumocyte hyperplasia 12% 0%–1%
Abdominal lymphangioleiomyoma 9% 29%
Renal angiomyolipoma 93% 32%
 Single 0% 46%
 Bilateral 92% 19%
Uterine PEComas 100% 70%

TSC-LAM, Tuberous Sclerosis Complex Associated LAM; LAM that 
occurs in a patient with TSC, S-LAM (Sporadic LAM); LAM that occurs 
in a patient without TSC.
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abolic reprogramming and the nature of mitogenic stimuli. A 
variety of factors are likely to contribute to the proliferation 
of LAM cells, including β-catenin, which is activated in LAM 
(84–86), associated with upregulation of cyclin D1 (84), and 
contributes to LAM cell invasiveness (87); HMGA2, an archi-
tectural transcription factor that is misexpressed in a number 
of mesenchymal neoplasms (88); Polo-like kinase–1 (PLK1) 
(89) and PLK2 (90), which interact directly with TSC1 in a cell 
cycle–dependent manner; cyclin-dependent kinase inhibitor p27, 
which is mislocalized to the cytoplasm in TSC-deficient cells 
(91, 92); and prolactin, a hormone and smooth muscle mitogen 
that is elevated in the serum of patients with LAM (93). A better 
understanding of these apoptotic and proliferative factors could 
lead to clearly targetable nodes.

Autophagy-dependent cell survival
Autophagy can play both pro-survival and pro-death roles dur-
ing tumor initiation and tumor progression (Figure 2C). TORC1 
is a key inhibitor of autophagy via ULK1 (94–99), and markers 
such as the adaptor protein p62/sequestrome 1 (p62/SQSTM1) 
indicate that autophagy levels are low in TSC-deficient LAM 

cells (56). Mice that are heterozygous for both TSC2 and Beclin-1 
(an autophagy effector) show a decrease in the number of renal 
cystadenomas compared with mice heterozygous for Tsc2 alone, 
suggesting that inhibition of autophagy decreases the survival 
and/or proliferation of TSC2-deficient cells. In addition, treat-
ment with the autophagy inhibitor chloroquine results in a 
decrease in the size of renal tumors in TSC2-deficient mice 
(56). Treatment with sirolimus, on the other hand, may pro-
mote LAM cell survival by activating autophagy. Consistent 
with this concept, the combination of sirolimus and chloro-
quine appears to be particularly effective at inhibiting the 
growth of TSC2-deficient cells, both in vitro and in vivo (56). 
Taken together, these data suggest that low levels of autophagy 
in TSC2-deficient LAM cells serve to limit their growth and 
survival, and that dependence on autophagy could represent 
a therapeutically targetable “Achilles heel.” Interestingly, p62/
SQSTM1, which accumulates in cells with defective autophagy, 
may enhance the tumorigenic potential of TSC2-deficient cells 
(100). p62/SQSTM1 also activates Nrf2 and NF-κB and may 
thereby mediate the production of pro-survival cytokines that 
allow LAM cells to resist cell death (101–103).

Figure 1
The clinical and pathologic features of LAM. (A–D) Representative 
radiologic features of LAM include (A) multiple thin-walled cysts 
and pneumothorax, (B) pleural effusions (arrowhead), (C) renal 
angiomyolipomas (arrow), and (D) retroperitoneal lymphadenop-
athy (arrow). (E) High-power view of cystic change with surround-
ing LAM in the lung. LAM cells express the melanocystic antigen, 
HMB-45, as well as estrogen receptor and the smooth muscle 
cell antigen, smooth muscle actin. An immunohistochemical stain 
for podoplanin highlights lymphatic channels within cystic lesions 
and LAM cells clusters within the lymphatic lumen. Original mag-
nification, ×400 (left and middle columns); ×200 (right column). 
Histology and immunohistochemistry courtesy of Kathryn Wiken-
heiser-Brokamp, Cincinnati Children’s Hospital Medical Center 
and the University of Cincinnati.
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Estrogen-induced effects on cell survival  
and proliferation
One of the leading mechanistic hypotheses for the remarkable pro-
pensity of LAM to affect females is that estrogen enhances the neo-
plastic potential and survival of LAM cells. Estradiol promotes the 
proliferation of TSC2-deficient cells in rat models of TSC-LAM, 
both in vitro and in vivo (100, 104, 105) and has been observed 
to activate non-genomic signaling networks in primary cultures 
of angiomyolipoma cells ex vivo (106). Recent evidence suggests 
that estrogen-dependent signaling networks provide one of the 
central mechanisms by which LAM cells resist apoptosis. In TSC2-
deficient cells, estrogen activates MAPK, perhaps in part through 
production of reactive oxygen species (107), and promotes resis-
tance to anoikis-induced apoptosis through (MAPK-dependent) 
degradation of Bim (106). Furthermore, estrogen enhances the 
survival of intravenously injected TSC2-deficient cells and the 
recovery of circulating TSC2-deficient cells in the plasma of mice 
bearing xenograft tumors (106).

RhoA and LAM cell survival
TSC2-deficient LAM cells may also evade apoptosis via activation 
of RhoA (Figure 2B). Goncharova et al. found that downregulation 
of RhoA in TSC2-deficient rat–derived cells increases apoptosis 
and upregulates the proapoptotic proteins Bim, Bok, and Puma 
(71). Interestingly, the RhoA activation appears to be dependent 
on TORC2, rather than TORC1, and inhibition of RhoA using 
simvastatin induces apoptosis in vitro. Most importantly, the 
combination of sirolimus and simvastatin inhibited xenograft 
tumor growth and completely blocked the recurrence of xenograft 
tumors after treatment withdrawal (71). This finding may have 

fundamental translational significance for combinatorial thera-
peutic strategies to induce the death of LAM cells, potentially obvi-
ating the need for continuous, life-long suppressive therapies.

Metabolic reprogramming of LAM cells mimics  
that seen in cancer
Otto Warburg recognized in 1930 that cancer cells utilize glycoly-
sis rather than oxidative phosphorylation for energy production, 
even in aerobic conditions, despite the far lower yield of ATP per 
molecule of glucose (108). This “Warburg effect” has received 
increasing attention over the last five years as a hallmark fea-
ture of most cancer cells and other rapidly dividing cells (109). 
TORC1 is a master regulator of cellular metabolism through 
several mechanisms that may allow LAM cells to redirect energy 
metabolism toward biosynthetic programs. Activation of mTOR 
in TSC-deficient cells appears to promote the Warburg effect by 
increasing HIF-1α and sterol regulatory element–binding proteins 
(SREBP1 and SREBP2) (110) that are involved in glycolysis, the 
oxidative arm of the pentose phosphate pathway, and lipid bio-
synthesis (81). Surprisingly, angiomyolipomas (111) and LAM tis-
sues (112) have relatively low fluorodeoxygluose (FDG) uptake on 
PET scanning, compared with most human neoplasms. Decreased 
glucose uptake is due in part to defective membrane localization 
of glucose transporter proteins (Glut1, -2, and -4) (111). TSC1/2-
deficient cells are also hypersensitive to glucose deprivation (81). 
The reliance on glucose is closely linked to a dependence on gluta-
mine metabolism via the TCA cycle, and inhibitors of glutamate 
dehydrogenase, such as the green tea component epigallocatechin-
3-gallate (EGCG), can induce the death of TSC-deficient cells both 
in vitro (80, 113) and in vivo (114). Furthermore, TSC2-deficient 

Figure 2
Signaling networks in LAM cells. (A) LAM cells with biallelic mutational inactivation of the TSC1 or TSC2 gene have activation of the small 
GTPase and Ras homolog, Rheb. Rheb activates the “canonical” mTORC1 signaling network, leading to increased protein translation and 
decreased autophagy. Sirolimus (rapamycin) inhibits some of the functions of mTORC1. The impact of sirolimus on the targets of TORC1 may be 
cell type–specific and kinetically dynamic. New targets of the kinase domain of TORC1 continue to be identified. (B) Several TORC1-independent 
signaling functions of the TSC-Rheb node have been proposed, including activation of Notch and Rho and inhibition of B-Raf. Candidate TORC1-
independent cellular activities of TSC-Rheb include aggresome accumulation and primary cilium formation.
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cells have recently been found to preferentially express pyruvate 
kinase M2 (PKM2) (115), which is expressed by most cancer cells 
and enhances glycolytic flux by slowing the TCA cycle. Agents that 
selectively inhibit glucose or glutamate uptake or utilization, or 
that activate PKM2, and thereby target these “metabolic vulner-
abilities” could be exploited to induce the death of LAM cells.

Novel mechanisms of invasion, metastasis, and immune 
evasion facilitate the spread of LAM
Mounting evidence suggests that LAM cells behave in a manner 
that is reminiscent of low-grade sarcoma cells, based on their 
smooth muscle features (spindled morphology, and smooth 
muscle actin and desmin staining) and their neoplastic, meta-
static, and destructive potential. Genetic analyses of microdis-
sected LAM lesions in the lungs and kidneys of a few women 
with sporadic LAM have revealed identical TSC2 mutations in the 
two locations (43). This discovery led to the paradigm-shifting 
“benign metastasis” model of LAM pathogenesis, in which LAM 
cells spread from angiomyolipoma to the lung, or from a periph-
eral source to both lung and kidney, despite their innocent histo-
logical appearance and low proliferative potential (116). Consis-
tent with the benign metastasis model, two independent genetic 
studies of the cells that constitute recurrent LAM lesions in the 
donor lung of human LAM patients who had been transplanted 

demonstrated that they derive from the recipient rather than 
from the allografts (46, 117).

The source of LAM cells has remained unclear, akin to a can-
cer of unknown primary. LAM cells express melanocytic antigens, 
consistent with a potential origin in the neural crest. Other neu-
ral crest lineage tissues appear to be impacted in TSC patients, 
leading to pitting of the dental enamel and hypomelanotic skin 
lesions (32). The propensity of LAM cells to migrate and metas-
tasize is reminiscent of the highly migratory behavior of neural 
crest progenitor cells during embryonic development. The uterus 
is a particularly attractive candidate as a source of these neural 
crest progenitor cells, and this explanation would make sense of 
their estrogen receptor expression and responsiveness (118). LAM, 
angiomyolipomas, and clear cell “sugar” tumors of the lung have 
been recently classified as perivascular epithelioid cell tumors, 
or PEComas, mesenchymal tumors composed of histologically 
and immunohistochemically distinctive cells (with no known 
normal anatomic counterpart) that express myoid and melano-
cytic markers. PEComas are most commonly found in the uter-
us and peritoneum (119–122). A recent study found a very high 
prevalence of uterine PEComa lesions in patients with S-LAM and 
TSC-LAM, fueling speculation that uterus may be the “primary 
tumor” source of LAM cells in many cases (118). Several investiga-
tors have proposed that the angiomyolipoma may be a source in 

Figure 3
Hypothesis for LAM progression. LAM cells have smooth muscle cell features and originate from an unknown source; renal angiomyolipomas and 
uterine lesions have been proposed as potential primaries. These cells proliferate and drive a lymphangiogenic program that results in demarca-
tion of tissue by chaotic lymphatic channels and the formation of LAM cell islands surrounded by lymphatic endothelium, which then bud into the 
lumen of the lymphatic system (i). These LAM cell clusters ascend the lymphatic tree by serial cycles of implantation and shedding (ii) and are 
transported by lymphatic flow to the venous circulation (iii) and ultimately impact in the pulmonary microvasculature (iv). Modified from ref. 28.



science in medicine

3812 The Journal of Clinical Investigation   http://www.jci.org   Volume 122   Number 11   November 2012

some patients, but only about 30% of women with S-LAM have 
radiographically detectable angiomyolipomas. The thoracic duct 
is frequently extensively infiltrated with LAM cells at autopsy (22), 
suggesting that LAM may arise from a site within the lymphatic 
system (Figure 3). LAM cell clusters in chylous fluid (123, 124) 
are composed of TSC mutation–bearing smooth muscle actin–
positive spindle cells enveloped by lymphatic endothelial cells. 
Kumasaka et al. have proposed that LAM cells, through their 
expression of VEGF-C and VEGF-D, drive a lymphangiogenic pro-
gram that demarcates the LAM cells into endothelium-rimmed 
islands (27, 28). After budding into the lumen, LAM cell clusters 
leapfrog up the lymphatic tree through serial cycles of implanta-
tion and shedding, and are transported by lymphatic flow to the 
venous circulation and the pulmonary microvasculature (125). 
The VEGFR-3–expressing endothelial cells that envelope the LAM 
cell clusters may serve to shield mutation-bearing LAM cells from 
immune surveillance against novel or ectopic surface antigens they 
express, such as the glycolipid GD-3 (126). Long dwell times of 
these “tumor emboli” in the pulmonary capillaries may facilitate 
metastasis by a process similar to that proposed for the angio-
genesis-driven, “invasion-independent” mechanism described for 
endothelial cell–lined renal cell carcinoma clusters that gain access 
to the interstitium via surrounding venules (127, 128).

Cyst formation in the lung
LAM cell infiltration and elaboration of matrix-degrading enzymes 
likely drive the formation of cysts in the lung and contributes to 
both the obstructive and restrictive physiologic defects that are 
characteristic of LAM. Immunohistochemical staining of LAM 
lesions demonstrates overexpression of MMPs and metalloprotein-
ase inducers, as well as a paucity of the tissue inhibitor of metal-

loproteinases TIMP-1 (129–131). Although MMP-2 is the most 
abundantly expressed MMP in LAM tissue, serum levels of MMP-9, 
but not MMP-2, are elevated in patients (132–134). LAM cells also 
exhibit strong immunoreactivity for cathepsin K, a protease that 
is downstream of mTOR in osteoclasts (135). Whether all of the 
airspace enlargement in LAM is the result of proteases secreted by 
LAM cells is not entirely clear. The abundance of lymphatic spaces 
and expression of VEGF-C, VEGF-D, VEGFR-3, Lyve-1, and podo-
planin within LAM lung lesions has led to the hypothesis that dis-
organized lymphangiogenesis may underlie the program of metal-
loproteinase expression and lung remodeling in LAM (Figure 4). 
Elucidation of the spatial and temporal expression of proteases 
during lymphatic development may therefore shed light on the 
mechanisms of cystic remodeling in LAM and perhaps also lead to 
therapeutic strategies for targeting these mechanisms.

Clinical trials of sirolumus in LAM
The Cincinnati Angiomyolipoma Sirolimus Trial (CAST) was ini-
tiated in 2003 (136). Patients with angiomyolipomas due to either 
TSC or LAM were treated with escalating doses of sirolimus for one 
year, followed by one year of observation off therapy. Renal angio-
myolipoma volume decreased by about 50% on the drug and then 
increased back to near baseline levels when sirolimus was stopped. 
Similar results were seen in subsequent trials (137, 138). On the basis 
of an unexpected lung function response in CAST, and the appre-
ciable rate of adverse events, a pivotal trial was designed to determine 
the risks and benefits of sirolimus in patients with LAM. The Multi-
center International LAM Efficacy of Sirolimus (MILES) trial was a 
double-blind, randomized, controlled trial of sirolimus in 89 adult 
females with LAM and abnormal lung function (139). During the 
treatment period, lung function stabilized with sirolimus treatment, 

Figure 4
Mechanisms of airspace enlargement in LAM. Two models of airspace enlargement in LAM are presented; these may not be mutually exclusive. 
(A) LAM cells secrete proteases including MMPs and cathepsin K, which degrade the extracellular matrix and induce apoptosis of alveolar epi-
thelial cells. (B) LAM cells express lymphangiogenic growth factors, VEGF-C and VEGF-D, recruit lymphatic endothelial cells, drive the formation 
of lymphatic vascular channels and distort the lung architecture. Original magnification, ×200.
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and it declined by about 11% in the placebo group. After discontinu-
ation of sirolimus, lung function decline resumed in the sirolimus 
group and paralleled that in the placebo group. Serum VEGF-D was 
markedly reduced by sirolimus, but tended to increase again when 
the drug was withdrawn. Adverse events were more common with 
sirolimus, but the frequency of serious adverse events was balanced 
between the groups. The data suggest that sirolimus therapy may 
attenuate tumor cell infiltration or proliferation within the lung, 
but does not result in durable remission. The tumor regression seen 
in CAST and the other renal trials is instructive in this regard, and 
suggests that sirolimus therapy may be cytostatic and reduce cell 
size, but will not lead to apoptosis and cell death in TSC-deficient 
cells. It is possible that mTOR inhibitors must be given continu-
ously to maintain cellular homeostasis and avoid angiomyolipoma 
regrowth and lung function decline; indeed, there is early evidence of 
sustained benefit from long-term therapy (137, 140) The decreases 
in VEGF-D in patients receiving sirolimus (138, 139) are intriguing 
in light of the strong lymphangiogenic phenotype observed in LAM 
and marked improvement in chylous effusions and lymphangioleio-
myoma volume in LAM patients with lymphatic involvement (140). 
Finally, the trial utilized a multisite international approach to clini-
cal trial design in LAM, with more than a dozen participating sites 
in three countries. This investigator-initiated network facilitated the 
efficient testing of therapeutic strategies in LAM, and may also serve 
as a model for research on other rare diseases (141).

The way forward
Less than 15 years elapsed between the identification of the 
genetic etiology of LAM and the discovery of an effective thera-

py. However, additional action is necessary to identify strategies 
that will benefit women with LAM in the fastest possible time. 
Better cellular and animal models are needed, and additional 
biomarkers that predict disease progression and response of 
LAM to targeted therapies will be critical for future clinical trial 
design. Earlier diagnosis through screening of populations of 
women with TSC and women with sporadic LAM who may pres-
ent with pneumothorax or nonspecific respiratory symptoms 
(142) is essential to facilitate treatment before irreversible lung 
damage occurs. Quantitative imaging techniques to measure 
lung destruction and LAM cell burden are needed, as current 
pulmonary function testing methods are insensitive, nonspecif-
ic, and effort dependent. Finding effective treatments for LAM 
will also require an iterative “bedside to bench and back to bed-
side” effort by investigative teams with broad expertise in basic, 
translational, and clinical science. Emerging preclinical evidence 
has set the stage for testing of kinase inhibitors, estrogen-tar-
geted therapies, autophagy inhibitors, and lymphangiogenesis 
inhibitors (Figure 5). Combination strategies based on cancer 
treatment paradigms that target codependent or redundant cel-
lular pathways to induce the death of LAM cells, with the objec-
tive of remission induction rather than disease suppression, are 
currently being tested in animal models. FDA-approved drugs 
with well-understood safety profiles are already available for 
many of the targets under consideration. Fortunately, mecha-
nisms are already in place to rapidly and efficiently test promis-
ing therapeutic strategies through the coordinated efforts of an 
international team of investigators and an organized, motivated 
LAM patient community.

Figure 5
Future directions in therapy for LAM. (A) Potential cell-autonomous therapeutic approaches in LAM include TORC1 inhibitors that may more 
effectively inhibit TORC1 (including kinase domain inhibitors) and/or have favorable toxicity and/or pharmacokinetic features; autophagy inhibi-
tors; inhibitors of the putative “noncanonical” functions of TSC and Rheb, including Notch activation and Rho activation; direct inhibitors of Rheb’s 
activity (such as farnesyl transferase inhibitors). (B) Potential non-cell-autonomous therapeutic targets in LAM include inhibition of the lymphatic 
recruitment and vascular remodeling via inhibition of VEGF or VEGFR; inhibition of MMPs, cathepsin K, and other proteases that contribute to 
alveolar destruction; inhibition of LAM cells utilizing melanocyte or neural crest antigens as targets; and estrogen antagonism.
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