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Osteoclasts are terminally differentiated leukocytes that erode the mineralized bone matrix. Osteoclastogen-
esis requires costimulatory receptor signaling through adaptors containing immunoreceptor tyrosine-based
activation motifs (ITAMs), such as Fc receptor common y (FcRy) and DNAX-activating protein of 12 kDa.
Identification of these ITAM-containing receptors and their ligands remains a high research priority, since
the stimuli for osteoclastogenesis are only partly defined. Osteoclast-associated receptor (OSCAR) was pro-
posed to be a potent FcRy-associated costimulatory receptor expressed by preosteoclasts in vitro, but OSCAR
lacks a cognate ligand and its role in vivo has been unclear. Using samples from mice and patients deficient in
various ITAM signaling pathways, we show here that OSCAR costimulates one of the major FcRy-associated
pathways required for osteoclastogenesis in vivo. Furthermore, we found that OSCAR binds to specific motifs
within fibrillar collagens in the ECM that become revealed on nonquiescent bone surfaces in which osteoclasts
undergo maturation and terminal differentiation in vivo. OSCAR promoted osteoclastogenesis in vivo, and
OSCAR binding to its collagen motif led to signaling that increased numbers of osteoclasts in culture. Thus,
our results suggest that ITAM-containing receptors can respond to exposed ligands in collagen, leading to the
functional differentiation of leukocytes, which provides what we believe to be a new concept for ITAM regula-

tion of cytokine receptors in different tissue microenvironments.

Introduction

Cells of the mononuclear phagocyte system display remarkable plas-
ticity and can differentiate into a variety of mononucleated and mul-
tinucleated cells with highly specialized effector functions, depending
on the signals that they receive from their tissue microenvironment
(1, 2). Osteoclasts are giant multinucleated cells derived from the cell
fusion of mononuclear phagocyte precursors. The resorptive activity of
osteoclasts is essential for bone remodeling (3) but is also responsible
for the pathological bone loss observed in autoimmune diseases, such
as osteoporosis and rheumatoid arthritis, and bone cancers and rare
clinical disorders, such as Nasu-Hakola (NH) disease (4-6). Osteoclast
differentiation is induced by the RANKL cytokine (7, 8) and costimu-
latory signals generated by the transmembrane immunoreceptor
tyrosine-based activation motif (ITAM) adaptors, DNAX-activating
protein of 12 kDa (DAP12) and Fc receptor common Y (FcRY) (refs.
9 and 10 and Supplemental Figure 1; supplemental material avail-
able online with this article; doi:10.1172/JCI45913DS1). RANK and
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ITAM signaling have been shown to cooperate to induce the master
transcription factor for osteoclastogenesis, NFATc1 (11). The induc-
tion of NFATCc1 is thought to be dependent on the calcium signals
generated by ITAM adaptor signaling, which are linked to RANK sig-
naling by Tec family kinases (12, 13). How are the costimulatory sig-
nals generated during osteoclastogenesis? DAP12 and FcRy signal via
ITAMs encoded in their cytoplasmic tails but have short extracellular
domains with no ligand-binding capacity. Therefore, DAP12 and
FcRy must associate with a ligand-binding immunoreceptor subunit
in order to transduce the ITAM signals that are required to synergize
with RANK signaling in osteoclastogenesis (Supplemental Figure 1).
Identification of the various DAP12- and FcRy-associated immuno-
receptors and their native ligands, which can exclusively deliver the
costimulatory ITAM signals for osteoclastogenesis in vivo, is currently
incomplete but is crucial to our understanding of how ITAMs can
mediate osteoclast differentiation during skeletal development, bone
remodeling, and in bone diseases, such as NH (9, 10, 14-16).
Osteoclast-associated receptor (OSCAR) is specifically expressed by
preosteoclasts and signals via FcRy (ref. 17 and Supplemental Fig-
ure 1). OSCAR was shown to be a potent costimulatory receptor in
vitro (18). However, the identity of an OSCAR ligand and the role of
OSCAR in vivo has been obscure. An OSCAR ligand has been report-
ed to be associated with osteoblast (OB) lineage cells (9, 18), which
rescued DAP127/~ osteoclastogenesis in vitro (9). In mice, Oscar is a
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Figure 1

OSCAR is a collagen receptor. (A) Binding of human Ig-like receptor Fc fusions to BSA or collagens |-V in a solid-phase binding assay (see
Methods). A GpVI Fc-fusion protein (GpVI-Fc) was used as positive control for collagen-binding activity, and human IgG (hlgG) was used as neg-
ative control. For a description of the other human Ig-like receptor Fc-fusion negative controls, please see Methods and Supplemental Figure 2A.
(B) hOSCAR-Fc, preincubated with murine IgG1 or anti-hOSCAR mAb 11.1CN5, binding to BSA or collagen I-lll. Solid-phase assay binding
data are represented as mean (n = 3) + SEM. (C) Collagen I-FITC binds to hOSCAR-expressing RBL-2H3 cells (clone 9). RBL-2H3 cells stably
expressing hOSCAR-FLAG (white) and untransfected RBL-2H3 cells (dark gray) were stained with FITC-conjugated anti-FLAG mAb and ana-
lyzed by flow cytometry. Collagen I-FITC binding to hOSCAR-FLAG transfected RBL-2H3 cells compared with that of untransfected-RBL-2H3
cells. Preincubation with mouse anti-hOSCAR mAb 11.1CN5, but not a mouse 1gG1 isotype control mAb, blocks collagen I-FITC binding to
hOSCAR-FLAG expressing RBL-2H3 cells. (D) An OSCAR ligand is associated with OBs and stromal cells. Murine OSCAR-Fc (mOSCAR-Fc)
and hOSCAR-Fc binding to collagenase-treated (white) or untreated (gray) BMSs or OBs.

RANKL-inducible gene and is thus expressed during the later stages
of preosteoclast maturation (18). Mononuclear osteoclast precursors
are delivered to bone surfaces where RANKL is abundantly expressed
(Supplemental Figure 1 and ref. 19). Native bone surfaces are coated
with a mantle of fibrillar collagen (20-22), which is expressed, and in
turn covered by bone-lining cells of the OB lineage (23-25).
Collagen is an ECM protein defined by repeating (Gly-X-X') motifs,
where X is commonly proline (Pro, P) and X' is commonly hydroxy-
proline (Hyp, O), a structure that promotes triple-helix formation
(26). About 50 genes encode polypeptides that combine to form the
30 or so triple-helical collagens found in vertebrates. We reasoned
that the OSCAR ligand might be an ECM collagen either associated
with osteoblastic bone-lining cells (23-25) or exposed on native bone
surfaces where osteoclasts undergo terminal differentiation in vivo
(20-24, 27). This process might resemble the way exposed subendo-
thelial collagens stimulate platelet activation through the related gly-
3506
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coprotein VI-FcRy (GpVI-FcRy) receptor, leading to thrombus for-
mation (28). In addition, since OSCAR specifically signals via FcRy,
we reasoned that OSCAR may contribute to osteoclastogenesis in
conditions in which DAP12 signaling was deficient (9, 10, 14, 16). We
therefore set out to screen collagens as putative OSCAR ligands and
to define the role of OSCAR as a costimulatory receptor for osteo-
clastogenesis in DAP12-deficient conditions.

Results
OSCAR is a receptor for ECM collagens. We used a human OSCAR-Fc
(hOSCAR-Fc) fusion protein to assay for collagen-binding activity.
hOSCAR-Fc bound strongly to collagens I, II, and III, weakly to col-
lagen IV, but not to collagen V (Figure 1A). hOSCAR-Fc did not bind
to the triple-helical peptide ligands for integrin o1 (GFOGER and
derivatives; ref. 29); the GpVI ligand, (GPO) o, or the control peptide,
(GPP)yg (ref. 30 and Supplemental Figure 2B); or to the ECM proteins,
Number 9
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Figure 2

Collagens are exposed to preosteoclasts at bone-remodeling sites. (A)
OSCAR (red) is specifically localized in mononuclear cells expressing
TRAP (black) on bone surfaces (light blue counterstain). (B) Mono-
nuclear OSCAR+ cells (red) in contact with collagen IlI (brown) and (C)
collagen | (brown) at bone-remodeling sites. (D) Multinucleated TRAP*
cells express OSCAR, which (E) is also located in contact with collagen |
at the bone surface. Note the 2 situations in which collagen | and IlI
make contacts with OSCAR* cells: (a) located below OSCAR* cells,
exposed on bone surfaces (asterisks), and also (b) above OSCAR*
cells, associated with bone-lining cells (arrows) at bone-remodeling
sites. The localization of each antigen was validated with 2 indepen-
dent antibodies. Scale bar: 10 um.

vitronectin or fibronectin (Supplemental Figure 2C). An anti-hOSCAR
mADb (17) blocked hOSCAR-Fc binding to collagen I, II, and III (Fig-
ure 1B), showing a specific recognition of collagen by hOSCAR.
FITC-conjugated collagen I also bound to hOSCAR-expressing
RBL-2H3 cell clones, and thisbindingwasalso blocked by anti-hOSCAR
mAD (Figure 1C and Supplemental Figure 2D). Consistent with the
association ofan OSCAR ligand with OB lineage or stromal cells (9, 18,
21,23-25, 27), collagenase treatment of bone marrow stromal cells
(BMSs)and calvarial OBs removed theirability tobind mouse OSCAR-Fc
and hOSCAR-Fg, as assessed by immunostaining (Figure 1D).
These results show that OSCAR binds to collagens I-III in vitro and
to collagens associated with OB lineage or stromal cells.

Collagens are exposed to OSCAR-expressing mononuclear cells on native
bone surfaces. The surface of native bone is coated with fibrillar col-
lagen (20, 22), which is normally concealed beneath the layer of osteo-
blastic bone-lining cells that have expressed the collagen (21, 23, 25).
We therefore investigated whether the fibrillar collagen present on
bone surfaces would be exposed to mononuclear osteoclast precur-
sors expressing OSCAR at physiological sites of osteoclast maturation
and terminal differentiation in vivo. Consistent with previous reports,
we found that collagens I and III were located on nonquiescent bone
surfaces (20-25) and that these collagens were exposed to mononucle-
ar cells expressing both OSCAR and the osteoclast-specific isoform of
tartrate-resistant acid phosphatase (TRAP) in human bone biopsies
(Figure 2, A-E). We conclude that mononuclear OSCAR* osteoclast
precursors are either exposed to collagen I and III, which are both
OSCAR ligands, on collagen-coated bone surfaces (20, 22) or associ-

The Journal of Clinical Investigation

http://www.jci.org

research article

ated with osteoblastic bone-lining cells (21,23-25,27) in which osteo-
clasts undergo terminal differentiation in vivo (19, 23, 24, 27).

OSCAR binds to a specific motif in collagens. To identify an OSCAR-
binding sequence in collagen, we used overlapping triple-heli-
cal peptide libraries encompassing the entire collagen II and IIT
sequences (Toolkits), which have been described before (29, 30).
hOSCAR-Fc bound several peptides from Toolkits IT and III
(Figure 3A). A preliminary consensus triple-helical hLOSCAR-binding
sequence, GPOGPAGFOGAO, was deduced by aligning the 6 pep-
tides that bound most strongly to hOSCAR-Fc (Figure 3B). Peptide
I1I-36 derivatives (Supplemental Table 1) containing this motif
bound hOSCAR-Fc strongly (Figure 3C). An alanine scan performed
through the variable X and X’ positions of one such GXX' polymer
(Supplemental Table 1) demonstrated that hOSCAR-Fc binding
required hydroxyproline at position 3 and phenylalanine at position
8 (Figure 3C). Truncation of the C-terminal triplet (GAO) from the
putative motif had no effect, and, using additional amino acid sub-
stitutions, we explored the side chain determinants of hOSCAR-Fc
binding (Figure 3D). This established GPOGPX'GFX' as a minimal
hOSCAR-bindingtriple-helical peptide (OSCPeP) sequence (Figure 3E).
The interaction of OSCAR with OSCP¢ was dissociable within the
1- to 10-M range (Supplemental Figure 3).

Binding of a triple-helical collagen motif to OSCAR induces signaling. We
next assessed whether binding of collagen or OSCp® to OSCAR
could induce intracellular signaling. For this purpose, we generated
human OSCAR-CD3C (hOSCAR-CD3C) nuclear factor of activated
T cells-GFP (NFAT-GFP) reporter cells, which express GFP upon
ligand binding to OSCAR and activation of NFAT signaling via the
CD3C cytoplasmic signaling domain (31). GFP was expressed when
hOSCAR-CD3C reporter cells were cultured on immobilized colla-
gens L, I, III, or OSCP¢P recognized by hOSCAR-Fc (Figure 4A). GFP
expression was not observed after culture of hOSCAR-CD3C reporter
cells on plates coated with BSA or collagens IV or V; control triple-
helical peptide, (GPP),; or other triple-helical peptides that did not
bind hOSCAR-Fc (Figure 4A). Crucially, hOSCAR-CD3C and murine
OSCAR-CD3C reporter cells did not express GFP in response to an
immobilized linear peptide (Supplemental Table 1) comprising the
minimal OSCp¢? motif (Figure 4B), showing that the triple-helical
conformation of collagen is crucial for OSCAR recognition and sig-
naling. We also screened the hOSCAR-CD3C reporter cells against
the collagen Toolkits IT and III (Supplemental Figure 4). GFP sig-
naling generally paralleled hOSCAR-Fc binding activity (Figure 3A).
We next assessed whether OSCPe? could induce signaling in primary
cells that express OSCAR. The frequency of calcium oscillations in
human monocytes cultured on immobilized OSCPP was increased
compared with those cultured on immobilized (GPP);, (Figure 4, C
and D). These data show that intracellular signaling is induced upon
recognition of a triple-helical collagen motif by OSCAR.

The OSCAR-binding collagen motif costimulates osteoclastogenesis. We
next sought to confirm a role for OSCAR and its collagen ligand
in the costimulation of osteoclastogenesis in tissue samples ex
vivo (9, 10). Osteoclastogenesis from normal donor monocytes
was enhanced on plate-immobilized OSCpe, (GPP)s-GPOGPAG-
FOGAO-(GPP)s and (GPP)s-GAOGPAGFA-(GPP)s, compared
with that on immobilized BSA or control peptides that did not
bind OSCAR (Figure 5, A and B). The enhanced osteoclastogenesis
was inhibited when cultures were treated with hOSCAR-blocking
mAD (Figure 5C), showing that the costimulatory signaling effect
of OSCPeP on osteoclastogenesis was hOSCAR specific. Osteo-
clastogenesis was also increased in wild-type mouse bone marrow
Volume 121 3507
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Figure 3

OSCAR binds to a specific triple-helical motif in collagen. (A) hOSCAR-Fc binding (y axis, OD 450 nM) to overlapping triple-helical peptides
(x axis) from the collagen Il and Il Toolkits (29, 30). (B) Alignment of triple-helical collagen peptide sequences from Toolkits Il and Ill, displaying
highest affinity for hOSCAR-Fc. Predicted hOSCAR collagen-binding consensus is denoted by underlining. Alignment anchor residues are in
red. (C) hOSCAR-Fc binding to triple-helical 111-36 peptide “halves,” trimmed consensus (underlined), and effect of Alanine scan (bold) through
variable X and X' residues. (D) Effect of various amino acid substitutions through the variable X and X' residues of the 111-36 triple-helical peptide
backbone and deletion of the C-terminal triplet on hOSCAR-Fc binding. These data indicate that GPOGPX'GFX, where each proline residue
can be substituted by Alanine, is a preferred generic OSCAR-binding motif. Other permissive substitutions remain to be defined. (E) “Minimum”
collagen-binding consensus, with alignment of variant hOSCAR-binding residues. Data are represented as mean (n = 3) + SEM.

macrophages (BMMs) cultured on immobilized OSCP¢P compared
with that in either Oscar~~ or Feerlg7- BMMs (Figure 6, A and B).
Expression of the osteoclast-specific genes TRAP, cathepsin K
(Ctsk), calcitonin receptor (Caler), and Nfatcl was increased in wild-
type BMMs cultured on OSCPe? compared with those cultured on
BSA, but this was not observed in Oscar”/- BMM cultures cultured
on either BSA or OSCpe (Figure 6C). These results show that bind-
ing of the collagen motif to OSCAR evoked specific FcRy signaling
(17) in preosteoclasts, which costimulated osteoclastogenesis.

The effects of TGF-B1 and OSCr® on osteoclastogenesis are additive.
TGEF-B1 is a known enhancer of RANKL action. We next assessed
whether the combined effects of immobilized OSCP¢P and TGF-31
had an additive effect for osteoclastogenesis. We compared osteo-
clastogenesis of wild-type and Oscar”~ BMMs cultured on either
immobilized BSA or OSCpeP, with or without TGF-B1. In the
presence of TGF-P1, osteoclastogenesis of wild-type and Oscar~~
BMMs cultured on BSA was enhanced, although no differences
were observed between genotypes (Figure 7). TGF-B1 markedly
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increased the number of giant TRAP* osteoclasts for wild-type
BMMs cultured on immobilized OSCPeP compared with those cul-
tured on BSA. However, this was not observed for Oscar”- BMMs,
showing the effects of OSCP¢P on osteoclastogenesis were OSCAR
specific and additive with TGF-B1 (Figure 7).

OSCAR recognition of its collagen motif costimulates osteoclastogenesis
from DAPI12-deficient mice and patients with NH ex vivo. NH disease
results from a genetic deficiency in the DAP12 costimulatory path-
way of osteoclastogenesis (5, 32). An intriguing discovery was that
monocytic osteoclast precursors from triggering receptor expressed
on myeloid cells 2-deficient (TREM-2-deficient) or DAP12-defi-
cient patients with NH have impaired osteoclast differentiation
when cultured with recombinant RANKL in vitro (14, 16). However,
patients with NH are not deficient in osteoclast differentiation in
vivo and can present with an osteoporotic bone phenotype, which is
characterized by trabecular bone loss in addition to bone cysts (5).
DAPI12-independent costimulatory pathways for osteoclastogen-
esis must therefore be operating in the pathogenesis of NH bone
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The triple-helical conformation of the OSCAR-binding motif in collagen ligands can induce OSCAR signaling. (A) Dot plots (2,000 events) display-
ing the response of a hOSCAR-CD3t NFAT-GFP reporter cell line to immobilized BSA, (GPP)1, (GPP)s-GLOGPSGEO-(GPP)s, (GPP)s-GPOG-
PAGFOGAO-(GPP)s, or (GPP)s-GAOGPAGFA-(GPP)s or collagens |-V (y axis, GFP expression; x axis, forward scatter). (B) Dot plots (10,000
events) displaying the responses (GFP expression) of the hOSCAR-CD3¢ and murine OSCAR-CD3t (MOSCAR-CD3¢) NFAT-GFP reporter cell
lines to immobilized BSA; a linear peptide containing the minimal OSCAR-binding sequence GPOGPAGFO (linear); or a triple-helical peptide
designed to the minimal OSCAR-binding sequence, (GPP)s-GPOGPAGFO-(GPP)s (peptide sequences can be found in Supplemental Table 1)

(v axis, GFP expression; x axis, forward scatter). (C) Calcium spikes per
bilized OSCrer or (GPP)1o. Data are represented as mean (n = 5) + SE
cultured on either immobilized OSCre? or (GPP)1o.

disease, most likely through alternative FcRy-mediated pathways
(9, 10). For example, DAP12-deficient osteoclastogenesis in vitro
can be rescued in coculture with OBs because of the association of
an OSCAR ligand with these cells (refs. 9 and 18 and Figure 1D).
Hence, we assessed whether immobilized OSCP® could provide an
alternative differentiation signal to rescue osteoclastogenesis from
DAPI127- BMMs in vitro, as might be expected in vivo (20-25, 27) or
in cocultures with OBs in vitro (9, 18). Immobilized OSCP¢P rescued
the in vitro osteoclastogenesis defect of murine DAP127/~ BMMs
(Figure 8A). The rescued giant multinuclear DAPI127~ cells stained
for TRAP (Figure 8B) and formed well-defined actin-rich podosome
belts (Figure 8C). These results show that the OSCAR-binding col-
lagen motif can costimulate DAP12-deficient osteoclastogenesis.

The Journal of Clinical Investigation  http://www.j

cell per 10-minute period for human monocytes cultured on either immo-
M; *P < 0.05. (D) Representative calcium traces for human monocytes

To prove that the costimulatory signals elicited by the triple-heli-
cal collagen peptides that rescued DAP12-deficient osteoclastogen-
esis in preosteoclast cultures were OSCAR specific, we compared
osteoclastogenesis of BMMs from DAP127-Oscar”~ and DAP127/~
mice in culture with plate-immobilized OSCper. DAP127~, but not
DAPI127-Oscar”=, BMM precursors developed giant TRAP* multi-
nucleated cells in response to RANKL when cultured on immobi-
lized OSCper (Supplemental Figure 5, A-C). This effect was OSCAR
specific, because osteoclastogenesis on immobilized OSCPe was
restored by retroviral transduction of DAP12~/~Oscar”~ BMMs with
murine OSCAR (Figure 8D and Supplemental Figure 6, A and B) or
DAP12 (Supplemental Figure 6, C and D). Giant TRAP* multinu-
clear cells also developed on immobilized (GPP)yo in the presence of
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RANKL but to alesser extent (Figure 8D and Supplemental Figure 6,
Aand B), which likely resulted from the retroviral overexpression of
mouse OSCAR (Supplemental Figure 6E).

To further evaluate the significance of these findings in a clinical
setting, we also assessed whether OSCP®P could costimulate osteo-
clastogenesis using monocytes from TREM-2- or DAP12-deficient
patients with NH (14, 16). Greater numbers of TRAP* multinucle-
ated cells were formed when either TREM-2- or DAP12-deficient
monocytes from patients with NH were cultured with RANKL
on immobilized OSCP?, compared with those cultured on BSA
or (GPP),o (Figure 8, E-G). Thus, data from both mouse and NH
samples showed that OSCAR recognition of its triple-helical col-
lagen motif can costimulate osteoclastogenesis independently of
TREM-2 and DAP12 signaling.

OSCAR costimulates DAP12-deficient osteoclastogenesis in vivo. Since
OSCAR costimulated osteoclastogenesis independently of TREM-2
and DAP12 signaling in vitro, we sought to confirm a role for
OSCAR in osteoclast differentiation in vivo. Since we cannot
knockout, knockdown, or mutate all of the motifs in all of the col-
lagens that OSCAR binds, we chose to investigate OSCAR deficien-
cy in vivo. However, Fcerlg”/~ mice do not show any apparent defect
in bone, consistent with the known biological redundancy with the
DAP12 pathway of osteoclastogenesis (9, 10). Consistent with this,
Oscar”~ mice did not show any difference in bone volume when
compared to wild-type mice (data not shown). However, when we
generated DAP127/-Oscar”~ mice, they showed decreased TRAP*
osteoclast numbers (Figure 9, A and B), decreased osteoclast size
(Figure 9C), and a reduction in eroded bone surfaces (Figure 9D)
compared with those of DAP127~ mice. Consistent with these data,
OSCAR deletion caused reciprocal changes in marrow space and
trabecular bone in DAP127-Oscar~~ mice compared with those of
DAP127~ mouse bone (Figure 9A, toluidine blue and von Kossa,
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and Figure 9E). OB numbers and bone formation parameters did
not differ between the DAP127/-Oscar”/~ and DAP127/~ mice, show-
ing that the differences observed were not due to defects in the OB
compartment (Supplemental Figure 7, A-D). The number and vol-
ume of trabeculae in bones from DAP127/-Oscar”/~ mice were also
increased compared with those of DAP127~ mice when assessed by
micro-CT (WCT) (Supplemental Figure 8, A and B). These results
show that OSCAR is a bona fide costimulatory receptor required
for optimal osteoclastogenesis in vivo. Furthermore, they show
that OSCAR costimulated an FcRy-associated pathway for osteo-
clastogenesis in DAP12-deficient mice.

Discussion
The ECM is known to influence leukocyte differentiation, con-
sistent with an effect of ITAM on cytokine receptor signaling
(9, 10, 13, 33-36), and the association of growth factors with the
ECM. However, there is surprisingly little evidence for ITAM recep-
tors that can recognize ECM ligands or understanding of how the
ECM might cooperate with cytokines to influence leukocyte dif-
ferentiation in different tissue microenvironments. To our knowl-
edge, by identifying OSCAR as a collagen receptor, we are the first
to show a new role for the recognition of exposed ECM ligands in
the ITAM-mediated costimulation of osteoclastogenesis.

We have located 6 prominent OSCAR-binding sites in collagens II
and III. Of the 4 sites in collagen II, 3 share identity with collagen
lal and are conserved in collagen 1a2; in the fourth site, 6 out
of the 9 residues are identical in collagen 1al, and 7 out of the 9
are identical in collagen 1a.2. There are also several OSCAR-bind-
ing sites of lower affinity in collagens Il and III (Figure 3A). These
OSCAR-binding sites would be expected to decorate the ECM
surface exposed to cells expressing OSCAR, so that the coopera-
tive binding of several copies of ligand to several copies of recep-
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tor would lead to receptor clustering and activation. A range of
intrinsic affinities of ligand in the ECM are therefore likely to be
displayed, increasing the binding avidity. Thus, each type of col-
lagen fiber has the potential to bind and cluster multiple copies of
OSCAR to transduce ITAM signaling via FcRy.

Specifically for osteoclastogenesis, we envisage that OSCAR/colla-
gen costimulation of RANKL may be important in several situations.
For example, osteoclast precursors may gain access to bone surfaces
either from the bone marrow or the blood (Supplemental Figure 1).
To gain access to native bone surfaces, circulating osteoclast precur-
sors would need to undergo transendothelial migration across capil-
laries sheathed in collagen ITI (23) that express RANKL (37). Whether
recruited from the circulation or directly from the marrow, preosteo-
clasts would still be exposed to collagen I- and collagen III-coated
bone surfaces in close association with osteoblastic bone-lining cells
(refs. 20-25,27, and Figure 2). During skeletal development, the col-
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3) + SEM; *P < 0.05.

lagen I-rich mesenchyme surrounding cartilaginous bone rudiments
(38) is a known site of deposition for preosteoclasts as well as along
the growth plate, which also consists of type Il and X cartilage (39).
It is possible that OSCAR may contribute to osteoclastogenesis
in disease, such as rheumatoid arthritis (40), characterized by the
exposure of epitopes in collagen, or in the pathogenesis of NH bone
disease (5, 32), as an alternative FcRy-mediated pathway of osteo-
clastogenesis. For example, in rheumatoid arthritis, it is possible
that more OSCAR-binding motifs in collagens become exposed
as proteases (e.g., upregulated MMPs) strip off any masking colla-
gen-associated proteins. The degradation of collagen fibers might
also lead to the exposure of sequences embedded within the body
of the fiber. Incoming OSCAR" osteoclast precursors, recruited by
cytokine generation (e.g., RANKL), might then be activated by such
exposed “neoepitopes.” In the case of NH bone disease, we have
shown that OSCAR binding to its cognate triple-helical motif in
Volume 121 3511
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The effects of TGF-1 and immobilized OSCrer on osteoclastogenesis are additive. (A) Effect of £0.1 ng/ml TGF-31 on the osteoclastogenesis
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represented as mean (n = 3) + SEM; *P < 0.05 indicates an increase in osteoclasts cultured on OSCre? plus TGF-1 compared with either BSA

with or without TGF-f31 or OSCrep alone.

collagen costimulated the osteoclastogenesis of monocytes from
TREM-2- and DAP12-deficient patients with NH, and the targeted
genetic deletion of OSCAR in DAP12-deficient (DAP127/~Oscar~")
mice resulted in approximately 50% reduction in TRAP* cells and
approximately 50% increase in trabecular bone volume (as assessed
by uCT), compared with those of DAP127/~ mice.

Our finding that specific collagens, normally embedded in the
ECM or “hidden” from patrolling or circulating leukocytes behind
alayer of bone-lining or microendothelial cells, are OSCAR ligands
suggests that the revealed or exposed ECM in nonquiescent tissues
plays an active role in the local ITAM-mediated regulation of osteo-
clastogenesis. These data suggest that other costimulatory ITAM
receptors (e.g., associated with DAP12) in osteoclastogenesis might
also be predicted to sense changes in, or the exposure of, local ECM
in nonquiescent bone tissue. This concept may also be relevant to
alternative modes of differentiation for mononuclear phagocytes,
such as the synergy of DAP12 signaling with IL-4 in macrophage
fusion and the formation of multinucleated giant cells (MGCs) (33).
3512
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Foreign body MGCs can be formed in granulomartous disease, such
as tuberculosis, in which they are associated with a restriction of
the cell-to-cell spread of mycobacteria or with the surgical implanta-
tion of biomaterials (2). Local tissue damage caused by infections or
invasive surgical procedures could result in exposure of ECM pro-
teins that could be sensed by ITAM receptors, which could synergize
with cytokines associated with or expressed by the perturbed tissue.
Interestingly, MGCs are associated with increased MMP-9 activity,
which may contribute to tissue damage by liberating proteins or fac-
tors embedded in the ECM (41). In addition to osteoclasts, human
OSCAR is expressed on monocytes and macrophages as well as neu-
trophils and myeloid dendritic cells (17) and possibly also microglia.
Thus, human OSCAR could conceivably play a wider role in the
human mononuclear phagocyte system and might be predicted to
synergize with IL-4 or IL-13 in MGC formation (2, 33) or possibly
other cytokines and soluble factors at sites in which collagen ligands
are exposed or become dysregulated, e.g., during ECM remodeling
by cancers (42, 43). In this regard, collagen could be regarded as a
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(scale bar: 70 uM). Data are represented as mean (n = 3) + SEM.

“damage-associated molecular pattern” that could be sensed by
OSCAR in immune cells to detect perturbations in the local ECM.
Interestingly, receptors encoding immunoreceptor tyrosine-
based inhibition motifs (ITIMs), such as PIR-B, SIRPa, and
PECAM-1, can negatively regulate ITAM receptor signaling (44)
through recruitment of inhibitory protein tyrosine phosphatases,
such as SHP-1 and/or SHP-2, or the inositol phosphatase, SHIP
(45-47). Like the RANKL-osteoprotegerin axis (3, 8), OSCAR/
ITAM signaling may be negatively regulated by myeloid cell expres-
sion of the ITIM receptor, LAIR-1, which also binds to collagen
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and is genetically linked to OSCAR within the leukocyte receptor
complex (48, 49). In the absence of OSCAR signaling, such as in
DAP127-Oscar”~ mice, LAIR-1 inhibitory signaling on preosteo-
clasts could negatively regulate osteoclastogenesis in which colla-
gens are exposed, leading to a reduction in the TRAP* cells, which
we observed. Since murine OSCAR is RANKL-inducible (18), this
might suggest that, along with a requirement for at least “2 sig-
nals” (RANKL and ITAM), preosteoclasts may be similar to other
immune cells that must pass a series of checks and balances to
avoid inappropriate differentiation at the “wrong tissue site,” par-
Volume 121 3513

Number9  September 2011



research article

>

TRAP

Toluidine blue von Kossa

N.Oc/BS/mm
" @ e
0c.S/BS (%
ES/BS (%)
[y}
(=]

0-
DAP12+-DKO DAP12* DKO DAP12+DKO

ticularly since RANKL is known to be expressed in tissues outside
of bone (7, 8). The identification of OSCAR as a collagen recep-
tor that can costimulate osteoclastogenesis opens the way for its
exploitation for therapeutic interventions in bone metabolism. Of
note, OSCAR expression is upregulated in rheumatoid arthritis
(40), and polymorphisms in the OSCAR promoter are associated
with low bone mineral density in postmenopausal women (50).

Methods

Collagens. Ethicon (Ethicon Corp.) and Devro (Devro) are preparations of’
bovine collagen I fibers. ProColl (Devro) is a collagen I monomer. Horm
(Nycomed Pharma GmbH) is an equine collagen I fiber preparation.
Bovine collagen II and human collagens III, IV, and V were purchased
from Sigma-Aldrich.

Solid-phase assay and peptide immobilization. Peptide synthesis; polarimet-
ric confirmation of triple-helical status; immobilization of proteins, col-
lagens, and peptides; and the solid-phase binding assay were performed as
described previously (29, 30). BSA and ovalbumin peptide SIINFEKL (OVA)
were purchased from Sigma-Aldrich. Collagens, peptides, and control pro-
teins were immobilized onto plates at concentrations of 10 ug/mlin 10 mM
acetic acid. All peptides were certified LPS-free by LAL assay (Lonza).

BMS and OB culture. Adherent BMSs were flushed from the femurs and
tibias of 3- to 4-week-old mice. Calvarial OBs were isolated from neonatal
mice as described previously (18). BMSs and OBs were cultured in DMEM
supplemented with 10% heat-inactivated fetal calf serum, 100 U/ml peni-
cillin and streptomycin, and 100 ug/ml ascorbate. BMSs and OBs were
activated with 104 M vitamin 1,25-(OH),D; and 10-° M prostaglandin E,
(Sigma-Aldrich). Mouse and hOSCAR-Fc binding to BMSs and OBs was
assessed before and after collagenase treatment (30 minutes at 37°C) by
flow cytometry. Fc-fusion proteins were detected using goat anti-human
IgG-PE (Southern Biotechnologies), and mouse CD45-FITC* (Southern
Biotechnologies) cells were excluded by electronic gating.

Collagenase treatment. BMSs and OBs were incubated for 30 minutes
with 100 U/ml chromatography-purified, tissue culture-tested Clostridi-
wm histolyticum collagenase type VII (Sigma-Aldrich), before staining with
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Figure 9

OSCAR costimulates a major DAP12-
independent pathway for osteoclasto-
genesis in vivo. (A) Histology (TRAP,
toluidine blue, and von Kossa staining)
of the tibia (metaphysis) from DAP12--
Oscar’- (DKO) and DAP12-- mice (scale
bar: 100 uM). The bone marrow cavity of
DAP12--Oscar- mice is reduced (tolu-
idine blue staining) and filled with more
unresorbed bone (von Kossa) compared
with that of DAP72-- mice. (B) Decrease
in TRAP+ osteoclast numbers (osteo-
clast number/bone surface/mm [N.Oc/
BS/mm]), (C) osteoclast size (osteoclast
surface/bone surface [Oc.S/BS] [%)]), and

30 ul (D) eroded bone surfaces (eroded sur-
. face/bone surface [ES/BS]), with a con-
2 20 comitant increase in (E) trabecular bone
> volume (bone volume/tissue volume
l§ [BV/TV]) in DAP12--Oscar’- mice com-
@ 4p pared with those in DAP12-- mice. Data

are represented as mean (n = 10) + SEM;
*P < 0.05.
0

DAP12*- DKO

hOSCAR-Fc and mouse OSCAR-Fc fusion proteins and detection with goat
anti-human IgG-PE (Southern Biotechnologies).

Fe fusions. Production and purification of mouse and human Ig-like recep-
tor Fe-fusion proteins were performed as described previously (51). The
GenBank accession number of the human Ig-like receptor OSCAR-like
transcript-2 (OLT-2), which we believe to be novel, is DQ479398. GpVI (28),
TREM-1 (51), TREM-2 (14), TREM:-like transcript-1 (TLT1) (52), CRTAM
(53), and Siglec-15 (54) have been described before.

mAD blocking experiments. Fc fusions (30 minutes, room temperature) or
RBL-2H3 cells (30 minutes on ice) were preincubated with 2.5 ug/ml of
either mouse anti-human OSCAR mAb 11.1CNS (17) (Beckman Coulter)
or IgG1 control mAb (Dako) prior to assessment by either solid-phase
assay (Fc-fusions) or incubation with 5 ug/ml FITC-conjugated collagen I
(collagen I-FITC). RBL-2H3 cells were washed twice in PBS, before analysis
of collagen I-FITC binding by flow cytometry.

Double immunostaining of bone sections. Decalcified paraffin-embedded
bone marrow biopsies from 11 healthy individuals were included in the
study according to the specifications of the Danish Ethical Committee
approval no. S-20070121. Sections were processed as described previously
(23). Antibodies against human OSCAR were as follows: goat anti-OSCAR,
N terminus sc-34230, and C terminus sc-34233 from Santa Cruz Biotech-
nology Inc.; against collagen type I, rabbit anti-collagen type I, ab34710
and ab292, from AbCam; against collagen type III, mouse anti-collagen
type III, clone FH-7A, from AbCam and rabbit anti-collagen type III from
professor Juha Risteli, University of Oulu, Oulu, Finland; and against the
osteoclast-specific TRAP isoform, TRACPSD, clone ZY-9¢5, from Zymed.
The subsequent detection involved gold-silver enhancement for TRAPcS,
Liquid Permanent Red (Dako) staining for OSCAR, and DAB staining for
collagen type I and III, as described previously (23). Bone biopsies from 11
healthy patients were double stained with antibodies for either OSCAR/
TRAP or OSCAR/collagen I or OSCAR/collagen III, and the colocalization
of these antigens at nonquiescent bone-remodeling sites was assessed.

Plasmids. Human OSCAR was cloned into the p3xFLAG CMV-9 vector
(Sigma-Aldrich), and single-cell RBL-2H3 clones were selected with 1 mg/ml
active G418 (Gibco) using primers 5'-GTGTAAGCTTGACATCACTCC-
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GTCTGTCCC-3"and 5'-GCCATCTAGATTGGAAGTCTCGGGCTGCAG-3'.
Primers to the extracellular domains of human, 5'-GTGTAGATCTGACAT-
CACTCCGTCTGTCCC-3" and 5'-CCAGGTCGACTAGGTTCCCCCGGGT-
GTAGT-3', and murine, S'“TGCAGATCTGACTTCACACCAACAGCG-3'
and 5-ACGGTCGACGTTTCCCTGGGTATAGTCCA-3', OSCAR were
cloned into pDISPLAY (Invitrogen), a construct which encodes an N-termi-
nal HA tag and the transmembrane domain of the PDGFR. The resulting
N-terminal HA-tagged murine and human OSCAR-PDGFR transmem-
brane fusion proteins were then subcloned into pMx puro using primers
5'-AGCTCGGATCCACTAGTAAC-3' and S'-GCTTCTCGAGCCAAAGCAT-
GATGAGGATGA-3' in frame with the cytoplasmic tail of the human
CD3C chain, which was cloned using primers 5'-CTTGCTCGAGAGAGT-
GAAGTTCAGCAGGAG-3' and 5-TTGAGCGGCCGCATCCCCTGGCT-
GTTAGCGAG-3'". The following primers were used to clone murine DAP12
into pMx puro: 5'-CCTGGATTCTGGTGTCCAGTGCATATCTG-3" and
5'-GCCGCGGCCGCGCATAGAGTGGGCTCATCTG-3" and, OSCAR SP-S
and SP-L, 5"~ ACGGGGATCCCCCACCATGGTCCTGTCGCTGATAC-3'
and 5-CTTCGCGGCCGCTCTCCAGGCAGTCTCTTCAG-3'.

NFAT-GFP reporter cell assays. Murine 2B4 NFAT-GFP reporter cells were
a gift from Lewis Lanier, UCSF, San Francisco, California, USA (31). Trans-
duced reporter cells were cultured on immobilized proteins and peptides
for 24 hours at 37°Cin a 5% CO; incubator prior to analysis of GFP expres-
sion by flow cytometry.

Calcium signaling. Monocytes were isolated using the Dynal Monocyte
Negative Isolation Kit and stained with Fluo-3AM (3 uM for 30 minutes).
Monocytes were serum starved for 2 hours before use. Cells were pipetted
onto glass coverslips and coated with 10 ug/ml of either (GPP),o or OSCpep.
Monocytes were allowed to adhere for 10 minutes before unbound cells
were removed by washing. Changes in intracellular calcium were recorded
for 10 minutes with a laser scanning confocal microscope (Olympus)
using a x60 PLanApoN objective. Fluo-3 was excited at 488 nm and detec-
tion was at 510 to 570 nm.

Osteoclast cultures. Either 48- or 96-well tissue culture plates were coated with
proteins and peptides, as described previously (29, 30). Unbound protein and
peptides were removed by washing with PBS before blocking in a 5% CO,
incubator in 2% BSA, followed by complete a-MEM (both for 1 hourat 37°C).
Murine bone marrow was flushed from the tibias and femurs of 2- to 3-week-
old mice, and stromal cells and ECM-free bone marrow precursors (9) were
cultured as BMM s for 3 days in 100 ng/ml M-CSF (55) (0.1 ng/ml TGF-f1
[Peprotech]) prior to osteoclast differentiation with 10 ng/ml M-CSF and
either 30 ng/ml or 100 ng/ml RANKL (0.1 ng/ml TGF-$1) in coated tissue
culture plates. For human osteoclast cultures, peripheral blood monocytes
were MACS sorted from either healthy donors or frozen ampoules of periph-
eral blood mononuclear cells isolated from patients with NH (56) deficient
in either TREM-2 (patient NH2) or DAP12 (patient NH6) and cultured with
100 ng/ml RANKL and 30 ng/ml M-CSF (R&D Biosystems) on coated tissue
culture plates, as previously described (14). The mean number of giant TRAP*
cells with 3 or more nuclei from 3 wells was established.

Quantitative RT-PCR. DNAse-treated total RNA extracted from day S
osteoclast cultures cultured on either immobilized BSA or OSCPe was
reverse transcribed using the SuperScript III Kit (Invitrogen), and quan-
titative PCR was performed on osteoclast-specific genes TRAP, Ctsk, Calcr,
and NFATc1, as described previously (57).

Retroviral transductions. Plat-E cells were transfected with pMx puro retro-
viral constructs, and the resulting virus containing supernatants was used
to infect either 2B4 NFAT-GFP reporter cells with selection of single-cell
clones with 2.5 ug/ml puromycin or murine BMMs with 10 ug/ml puro-
mycin selection, as described previously (58).

Cell culture staining techniques and imaging. In vitro osteoclast cultures
were fixed with 4% PFA before staining for TRAP with a TRAP-staining
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kit (Sigma-Aldrich). Positive TRAP staining (TRAP*) results in a deep red
or dark purple histological stain. For fluorescence microscopy, PFA-fixed
osteoclast cultures were permeabilized with 0.1% Triton in PBS for 10 min-
utes, before blocking in PBS/0.5% BSA and staining with Phalloidin-Alexa
Fluor 488 and DAPI (Molecular Probes) to localize actin ring formation
and nuclei, respectively. Bright-field or fluorescence images were captured
using an Improvision OpenLab deconvolution microscope.

Mice and in vivo bone analysis. The genomic region of OSCAR was cloned from
a 129/Sv mouse genomic lambda phage library by using a full-length OSCAR
cDNA as probe. To make the gene targeting construct, long- and short-homol-
ogy fragments amplified by PCR were ligated into the pPNT vector (59). The
long-homology fragment was a 5.0-kb portion of the 3’ untranslated sequence
of the OSCAR gene, and the short-homology fragment was a 1.0-kb portion of
the intron 2 sequence of OSCAR. Homologous recombination in ES cells (59)
produced a deletion of approximately 3.0 kb, containing the entire extracellular
domain (exon 3 and 4) and transmembrane domain (exon 5) of OSCAR. The
E14.1 ES cells were cultured on mouse embryonic fibroblast feeder layers in
DMEM containing 15% fetal calf serum and 1,000 U of leukaemia inhibitory
factor. The ES cells were electroporated with 50 mg linearized targeting vec-
tor using a Bio-Rad electroporator (220 V and 960 mF). Transfected cells were
cultured with 200 mg/ml active G418 (GIBCO/BRL) and 0.2 mM Gancyclovir
(Roche Laboratories) for 7 to 9 days. After selection, 1,000 colonies were picked
and further analyzed by Southern blot. Four correctly targeted clones were
obtained, and 2 of them were microinjected into blastocysts from C57BL/6
mice. Founders were bred with 129/Sv mice to test for germ-line transmis-
sion. C57BL/6 Feerlg/~and DAPI127/~ mice have been described before (60). To
generate DAP127~ and DAP127/-Oscar”~ double-knockout mice, we first bred
DAP127/~ to Oscar”~ mice to obtain DAP127*Oscar”* F1 mice. These were inter-
crossed, and offspring with appropriate genotypes were selected to establish
DAP127/-Oscar”’~ and DAP127/ lines. Histomorphometric analyses of bone
from 4-week-old mice were carried out essentially as described previously (9).
For uCT analysis, the trabecular volume in the distal femoral metaphysis in
12-week-old mice was measured using a Scanco uCT40 Scanner (Scanco Medi-
cal AG). A threshold of 200 was used for evaluation of scans. All mice were born
and bred under specific pathogen-free conditions.

Statistics. Statistical significance was determined using GraphPad Prism,
version 4.0c. Statistical differences were determined by 2-tailed Student’s
t test (between 2 groups) and a 1-way ANOVA (among multiple groups).
P < 0.05 was considered to indicate statistical significance.

Study approval. All human and animal studies were reviewed and approved
by the Washington University in St. Louis human and animal studies commit-
tees. Informed consent was obtained from all subjects included in this study.
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